Livers and muscles of swamp eels (Monopterus albus) were analyzed for bioaccumulation of heavy metals during the plowing stage of a paddy cycle. Results showed heavy metals were bioaccumulated more highly in liver than muscle. Zinc (Zn) was the highest bioaccumulated metal in liver (98.5 ± 8.95 μg/g) and in muscle (48.8 ± 7.17 μg/g). The lowest bioaccumulated metals were cadmium (Cd) in liver (3.44 ± 2.42 μg/g) and copper (Cu) in muscle (0.65 ± 0.20 μg/g). In sediments, Zn was present at the highest mean concentration (52.7 ± 2.85 μg/g), while Cd had the lowest mean concentration (1.04 ± 0.24 μg/g). The biota-sediment accumulation factor (BSAF) for Cu, Zn, Cd and nickel (Ni) in liver tissue was greater than the corresponding BSAF for muscle tissue. For the three plowing stages, metal concentrations were significantly correlated between liver and muscle tissues in all cases, and between sediment and either liver or muscle in most cases. Mean measured metal concentrations in muscle tissue were below the maximum permissible limits established by Malaysian and U.S. governmental agencies, and were therefore regarded as safe for human consumption.
The spatial distribution of 19 polycyclic aromatic hydrocarbons (tPAHs) was quantified in aquacultures located in intertidal mudflats of the west coast of Peninsular Malaysia in order to investigate bioaccumulation of PAH in blood cockles, Anadara granosa (A. granosa). Fifty-four samples from environmental matrices and A. granosa were collected. The sampling locations were representative of a remote area as well as PAH-polluted areas. The relationship of increased background levels of PAH to anthropogenic PAH sources in the environment and their effects on bioaccumulation levels of A. granosa are investigated in this study. The levels of PAH in the most polluted station were found to be up to ten-fold higher than in remote areas in blood cockle. These high concentrations of PAHs reflected background contamination, which originates from distant airborne and waterborne transportation of contaminated particles. The fraction and source identification of PAHs, based on fate and transport considerations, showed a mix of petrogenic and pyrogenic sources. The relative biota-sediment accumulation factors (RBSAF), relative bioaccumulation factors from filtered water (RBAFw), and from suspended particulate matter (SPM) (RBAFSP) showed higher bioaccumulations of the lower molecular weight of PAHs (LMWs) in all stations, except Kuala Juru, which showed higher bioaccumulation of the higher molecular weight of PAHs (HMWs). Calculations of bioaccumulation factors showed that blood cockle can accumulate PAHs from sediment as well as water samples, based on the physico-chemical characteristics of habitat and behaviour of blood cockles. Correlations among concentrations of PAHs in water, SPM, sediment and A. granosa at the same sites were also found. Identification of PAH levels in different matrices showed that A. granosa can be used as a good biomonitor for LMW of PAHs and tPAHs in mudflats. Considering the toxicity and carcinogenicity of PAHs, the bioaccumulation by blood cockles are a potential hazard for both blood cockles and their consumers.
Thirty snakehead fish, Channa micropeltes (Cuvier, 1831) were collected at Lake Kenyir, Malaysia. Muscle, liver, intestine and kidney tissues were removed from each fish and the intestine was opened to reveal cestodes. In order to assess the concentration of heavy metal in the environment, samples of water in the surface layer and sediment were also collected. Tissues were digested and the concentrations of manganese (Mn), zinc (Zn), copper (Cu), cadmium (Cd) and lead (Pb) were analysed by using inductively-coupled plasma mass-spectrometry (ICP-MS) equipment. The results demonstrated that the cestode Senga parva (Fernando and Furtado, 1964) from fish hosts accumulated some heavy metals to a greater extent than the water and some fish tissues, but less than the sediment. In three (Pb, Zn and Mn) of the five elements measured, cestodes accumulated the highest metal concentrations, and in remaining two (Cu and Cd), the second highest metal accumulation was recorded in the cestodes when compared to host tissues. Therefore, the present study indicated that Senga parva accumulated metals and might have potential as a bioindicator of heavy-metal pollution.
The reconstruction of fire history is essential to understand the palaeoclimate and human history. Polycyclic aromatic hydrocarbons (PAHs) have been extensively used as a fire marker. In this work, the distribution of PAHs in Borneo peat archives was investigated to understand how PAHs reflect the palaeo-fire activity. In total, 52 peat samples were analysed from a Borneo peat core for the PAH analysis. Pyrogenic PAHs consist of 2-7 aromatic rings, some of which have methyl and ethyl groups. The results reveal that the concentration of pyrogenic PAHs fluctuated with the core depth. Compared to low-molecular-weight (LMW) PAHs, the high-molecular-weight (HMW) PAHs had a more similar depth variation to the charcoal abundance. This finding also suggests that the HMW PAHs were mainly formed at a local fire near the study area, while the LMW PAHs could be transported from remote locations.
Polybrominated diphenyl ethers (PBDEs) are extensively used as flame retardants in many consumer products, and leachates from landfills have been identified as one of the possible sources of PBDEs in the environment. Meanwhile, the unprecedented economic and population growths of some Asian countries over the last decade have led to significant increases in the amount of waste containing PBDEs in that region. This study investigates the status of PBDEs in leachates from municipal solid waste dumping sites (MSWDS) in tropical Asian countries. A total of 46 PBDE congeners were measured, both in the adsorbed (n=24) and dissolved (n=16) phases, in leachate samples collected, from 2002 to 2010, from ten MSWDS distributed among the eight countries of Lao PDR, Cambodia, Vietnam, India, Indonesia, Thailand, the Philippines, and Malaysia. PBDEs were predominantly found in the adsorbed phase. Partitioning of PBDEs in the dissolved phase was associated with the presence of dissolved organic matter; the apparent organic carbon-normalized partition coefficients (K'oc) of the BDE congeners were lower by two to four orders of magnitude than the K oc predicted from the octanol-water partition coefficients (K ow). The total PBDE concentrations from mono- to deca-BDEs ranged from 3.7 to 133,000 ng/L, and showed a trend toward higher concentrations in the more populous and industrialized Asian countries. The congener profiles in the leachates basically reflected the composition of PBDE technical mixtures. The occurrence of congeners not contained, or in trace concentrations, in technical products (e.g., BDEs 208, 207, 206, 202, 188, 179, 49, 17/25, 8, 1) was observed in most of the leachate samples, suggesting the debromination of technical mixtures, including BDE-209, in the MSWDS of tropical Asian countries. Moreover, the temporal trend indicated the reduction of BDE-209 over time, with a corresponding increase in and/or emergence of lower brominated PBDE congeners. The results indicated that MSWDS of tropical Asian countries are potential sources of environmental PBDEs, which may be transported to the aquatic environment via dissolution with dissolved organic matter. MSWDS could be amplifiers of PBDE toxicity in the environment, possibly through debromination.