METHODS AND ANALYSIS: This is a 1-year retrospective cohort study of patients with T2DM in 2016. Data will be collected from: (1) hospital databases from public institutions to estimate the cost of diabetes treatment and (2) physician interviews to estimate the cost of management of diabetes in outpatient care. We will perform descriptive and comparative analyses on direct medical costs and healthcare resource utilisation, stratified by the presence of diabetes-associated complications.
ETHICS AND DISSEMINATION: Research ethics board approval has been obtained from the Department of Health Single Joint Research Ethics Board and Cardinal Santos Medical Center Research Ethics Review Committee. Findings from the study will be reported in peer-reviewed scientific journals and local researcher meetings.
METHODS: We defined high CVD risk as the presence of any of the following: hypertension, coronary artery disease, stroke, smoker, diabetes or age >55 years. Availability and affordability of blood pressure lowering drugs, antiplatelets and statins were obtained from pharmacies. Participants were categorised: group 1-all three drug types were available and affordable, group 2-all three drugs were available but not affordable and group 3-all three drugs were not available. We used multivariable Cox proportional hazard models with nested clustering at country and community levels, adjusting for comorbidities, sociodemographic and economic factors.
RESULTS: Of 163 466 participants, there were 93 200 with high CVD risk from 21 countries (mean age 54.7, 49% female). Of these, 44.9% were from group 1, 29.4% from group 2 and 25.7% from group 3. Compared with participants from group 1, the risk of MACEs was higher among participants in group 2 (HR 1.19, 95% CI 1.07 to 1.31), and among participants from group 3 (HR 1.25, 95% CI 1.08 to 1.50).
CONCLUSION: Lower availability and affordability of essential CVD medicines were associated with higher risk of MACEs and mortality. Improving access to CVD medicines should be a key part of the strategy to lower CVD globally.
MATERIALS AND METHODS: In this study, 20 implant sites in patients were selected. Ridge mapping was done through a vacuum press template at three buccal (B1, B2, B3), three lingual (L1, L2, L3), and one crestal (C) points for each implant site. Readings were transferred onto the cast, and surgical guides were fabricated for implant placement. Postoperative cone beam computerized tomography (CBCT) was done to assess planned and achieved implant position. Comparison was done between soft tissue depths and implant distance from the crest of alveolar bone determined by the ridge mapping technique with measurements done on CBCT. The points used for ridge mapping were used as the reference for measurements. The data were analyzed using paired t test. p < 0.05 was considered to be statistically significant.
RESULTS: On comparing the mean values of soft tissue depths from the ridge mapping and CBCT data, insignificant differences were found at B1, B2, L1, L2, L3, and C, but significant differences were found at B3. On comparing the implant distances from alveolar bone from both the data, insignificant differences were found at B, B2, B3, L1, L2, and L3 and significant difference was found at the crest in the mean values.
CONCLUSION: Under the limitations of the above study, it can be concluded that a simple chairside procedure like ridge mapping can be used as an effective way for guided implant placement in sufficient available alveolar bone.