BACKGROUND: Changes in cell density and morphology of dental pulp cells over time may affect their capability to respond to tooth injury.
MATERIALS AND METHODS: One hundred thirty-one extracted teeth were obtained from individuals between the ages of 6 and 80 years. The apical 1/3 of the root region was removed from all teeth prior to routine processing for producing histological slides. The histology slides were used to study the changes in cell density and morphology of selected pulp cells; odontoblasts, subodontoblasts and fibroblasts in the crown and root regions of the dental pulp. Student's t-test and one-way anova were used for statistical analyses.
RESULTS: In all age groups, the cell density for all types of cells was found to be higher in the crown than in the root (p cell density was found to decrease with age in both the crown and root regions. However, it was noted that the reduction of coronal odontoblasts occurred later in life (40-49 years) when compared to that of subodontoblasts or fibroblasts (30-39 years).
CONCLUSIONS: The density of the coronal pulp cells reduces and these cells undergo morphological changes with ageing of individuals and this may affect the pulp's ability to resist tooth injury.
BACKGROUND DATA: The response of human blood to LLL irradiation gives important information about the mechanism of interaction of laser light with living organisms. Materials and methods Blood samples were collected into ethylenediaminetetraacetic acid (EDTA)-containing tubes, and each sample was divided into two equal aliquots, one to serve as control and the other for irradiation. The aliquot was subjected to laser irradiation for 20, 30, 40, or 50 min at a fixed power density of 0.03 W/cm(2). Mean cell volume (MCV) and red blood cell (RBC) counts were measured immediately after irradiation using a computerized hemtoanalyzer.
RESULTS: Significant decrease in RBC volume (p cell shrinkage.