Displaying publications 41 - 60 of 134 in total

Abstract:
Sort:
  1. Tan JW, Tham CL, Israf DA, Lee SH, Kim MK
    Neurochem Res, 2013 Mar;38(3):512-8.
    PMID: 23224778 DOI: 10.1007/s11064-012-0943-6
    L-Glutamate plays a crucial role in neuronal cell death, which is known to be associated with various neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases. In this study, we investigated the protective effects of biochanin A, a phytoestrogen compound found mainly in Trifolium pratense, against L-glutamate-induced cytotoxicity in a PC12 cell line. Exposure of the cells to 10 mM L-glutamate was found to significantly increase cell viability loss and apoptosis, whereas pretreatment with various concentrations of biochanin A attenuated the cytotoxic effects of L-glutamate. Specifically, the pretreatment led to not only decreases in the release of lactate dehydrogenase, the number of apoptotic cells, and the activity of caspase-3 but also an increase in the total glutathione level in the L-glutamate-treated PC12 cells. These results indicate that biochanin A may be able to exert neuroprotective effects against L-glutamate-induced cytotoxicity. Furthermore, our findings also imply that biochanin A may act as an antiapoptotic agent in order to perform its protective function.
    Matched MeSH terms: Caspase 3/metabolism
  2. Shafie NH, Esa NM, Ithnin H, Saad N, Pandurangan AK
    Int J Mol Sci, 2013;14(12):23545-58.
    PMID: 24317430 DOI: 10.3390/ijms141223545
    Inositol hexaphosphate (IP6), or phytic acid is a natural dietary ingredient and has been described as a "natural cancer fighter", being an essential component of nutritional diets. The marked anti-cancer effect of IP6 has resulted in our quest for an understanding of its mechanism of action. In particular, our data provided strong evidence for the induction of apoptotic cell death, which may be attributable to the up-regulation of Bax and down-regulation of Bcl-xl in favor of apoptosis. In addition, the up-regulation of caspase-3 and -8 expression and activation of both caspases may also contribute to the apoptotic cell death of human colorectal adenocarcinoma HT-29 cells when exposed to IP6. Collectively, this present study has shown that rice bran IP6 induces apoptosis, by regulating the pro- and anti-apoptotic markers; Bax and Bcl-xl and via the activation of caspase molecules (caspase-3 and -8).
    Matched MeSH terms: Caspase 3/genetics; Caspase 3/metabolism
  3. Ooi KL, Tengku Muhammad TS, Lim CH, Sulaiman SF
    Integr Cancer Ther, 2010 Mar;9(1):73-83.
    PMID: 20150224 DOI: 10.1177/1534735409356443
    The chloroform extract of Physalis minima produced a significant growth inhibition against human T-47D breast carcinoma cells as compared with other extracts with an EC(50) value of 3.8 microg/mL. An analysis of cell death mechanisms indicated that the extract elicited an apoptotic cell death. mRNA expression analysis revealed the coregulation of apoptotic genes, that is, c-myc , p53, and caspase-3. The c-myc was significantly induced by the chloroform extract at the earlier phase of treatment, followed by p53 and caspase-3. Biochemical assay and ultrastructural observation displayed typical apoptotic features in the treated cells, including DNA fragmentation, blebbing and convolution of cell membrane, clumping and margination of chromatin, and production of membrane-bound apoptotic bodies. The presence of different stages of apoptotic cell death and phosphatidylserine externalization were further reconfirmed by annexin V and propidium iodide staining. Thus, the results from this study strongly suggest that the chloroform extract of P. minima induced apoptotic cell death via p53-, caspase-3-, and c-myc-dependent pathways.
    Matched MeSH terms: Caspase 3/metabolism; Caspase 3/physiology*
  4. Shanmugapriya, Chen Y, Kanwar JR, Sasidharan S
    Nutr Cancer, 2017 10 25;69(8):1308-1324.
    PMID: 29068745 DOI: 10.1080/01635581.2017.1367944
    This study was conducted to investigate the anticancer effects and mechanism of Calophyllum inophyllum fruit extract against MCF-7 cells. C. inophyllum fruit extract was found to have markedly cytotoxic effect against MCF-7 cells in a dose-dependent manner with the IC50 for 24 h of 23.59 µg/mL. Flow cytometry analysis revealed that C. inophyllum fruit extract mediated cell cycle at G0/G1 and G2/M phases, and MCF-7 cells entered the early phase of apoptosis. The expression of anti-apoptotic proteins Bcl-2 was decreased whereas the expression of the pro-apoptotic protein Bax, cytochrome C and p53 were increased after treatment. C. inophyllum fruit extract led to apoptosis in MCF-7 cells via the mitochondrial pathway in a dose dependent manner. This is evidenced by the elevation of intracellular ROS, the loss of mitochondria membrane potential (Δψm), and activation of caspase-3. Meanwhile, dose-dependent genomic DNA fragmentation was observed after C. inophyllum fruits extract treatment by comet assay. This study shows that C. inophyllum fruits extract-induced apoptosis is primarily p53 dependent and mediated through the activation of caspase-3. C. inophyllum fruit extract could be an excellent source of chemopreventive agent in the treatment of breast cancer and has potential to be explored as green anticancer agent.
    Matched MeSH terms: Caspase 3/genetics; Caspase 3/metabolism
  5. Khanam R, Kumar R, Hejazi II, Shahabuddin S, Meena R, Jayant V, et al.
    Apoptosis, 2018 02;23(2):113-131.
    PMID: 29349707 DOI: 10.1007/s10495-018-1439-x
    Piperazine scaffolds or 2-azetidinone pharmacophores have been reported to show anti-cancer activities and apoptosis induction in different types of cancer cells. However, the mechanistic studies involve in induction of apoptosis addressing these two moieties for human cervical cancer cells remain uncertain. The present study emphasizes on the anti-proliferating properties and mechanism involved in induction of apoptosis for these structurally related azoles derivatives in HeLa cancer cells. 1-Phenylpiperazine clubbed with 2-azetidione derivatives (5a-5h) were synthesized, characterized using various spectroscopic techniques and evaluated for their in-vitro anti-proliferative activities and induction of apoptosis. Further, we also evaluated oxidative stress generated by these synthetic derivatives (5a-5h). Cell viability studies revealed that among all, the compound N-(3-chloro-2-(3-nitrophenyl)-4-oxoazetidin-1-yl)-2-(4-phenylpiperazin-1-yl) acetamide 5e remarkably inhibited the growth of HeLa cells in a concentration dependent manner having IC50 value of 29.44 ± 1.46 µg/ml. Morphological changes, colonies suppression and inhibition of migration clearly showed the antineoplasicity in HeLa cells treated with 5e. Simultaneously, phosphatidylserine externalization, DNA fragmentation and cell-cycle arrest showed ongoing apoptosis in the HeLa cancer cells induced by compound 5e in concentration dependent manner. Additionally, generation of intracellular ROS along with the decrease in mitochondrial membrane potential supported that compound 5e caused oxidative stress resulting in apoptosis through mitochondria mediated pathway. Elevation in the level of cytochrome c and upregulation in expression of caspase-3 clearly indicated the involvement of the intrinsic pathway of programmed cell death. In brief; compound 5e could serve as a promising lead for the development of an effective antitumor agent.
    Matched MeSH terms: Caspase 3/genetics; Caspase 3/metabolism
  6. Swamy M, Suhaili D, Sirajudeen KN, Mustapha Z, Govindasamy C
    PMID: 25395704
    BACKGROUND: Increased nitric oxide (NO), neuronal inflammation and apoptosis have been proposed to be involved in excitotoxicity plays a part in many neurodegenerative diseases. To understand the neuro-protective effects of propolis, activities of Nitric oxide synthase (NOS) and caspase-3 along with NO and tumor necrosis factor-α (TNF-α) levels were studied in cerebral cortex (CC), cerebellum (CB) and brain stem (BS) in rats supplemented with propolis prior to excitotoxic injury with kainic acid (KA).

    MATERIALS AND METHODS: Male Sprague-Dawley rats were divided into four groups (n=6 rats per group) as Control, KA, Propolis and KA+Propolis. The control group and KA group have received vehicle and saline. Propolis group and propolis + KA group were orally administered with propolis (150 mg/kg body weight), five times every 12 hours. KA group and propolis +KA group were injected subcutaneously with kainic acid (15 mg/kg body weight) and were sacrificed after 2 hrs. CC, CB and BS were separated, homogenized and used for estimation of NOS, caspase-3, NO and TNF-α by commercial kits. Results were analyzed by one way ANOVA, reported as mean + SD (n=6 rats), and p<0.05 was considered statistically significant.

    RESULTS: The concentration of NO, TNF-α, NOS and caspase-3 activity were increased significantly (p<0.001) in all the three brain regions tested in KA group compared to the control. Propolis supplementation significantly (p<0.001) prevented the increase in NOS, NO, TNF-α and caspase-3 due to KA.

    CONCLUSION: Results of this study clearly demonstrated that the propolis supplementation attenuated the NOS, caspase-3 activities, NO, and TNF-α concentration and in KA mediated excitotoxicity. Hence propolis can be a possible potential protective agent against excitotoxicity and neurodegenerative disorders.

    Matched MeSH terms: Caspase 3/metabolism*
  7. Ichwan SJ, Al-Ani IM, Bilal HG, Suriyah WH, Taher M, Ikeda MA
    Chin J Physiol, 2014 Oct 31;57(5):249-55.
    PMID: 25241984 DOI: 10.4077/CJP.2014.BAB190
    Thymoquinone (TQ) is the main constituent of black seed (Nigella sativa, spp) essential oil which shows promising in vitro and in vivo anti-neoplastic activities in different tumor cell lines. However, to date there are only a few reports regarding the apoptotic effects of TQ on cervical cancer cells. Here, we report that TQ stimulated distinct apoptotic pathways in two human cervical cell lines, Siha and C33A. TQ markedly induced apoptosis as demonstrated by cell cycle analysis in both cell lines. Moreover, quantitative PCR revealed that TQ induced apoptosis in Siha cells through p53-dependent pathway as shown by elevated level of p53-mediated apoptosis target genes, whereas apoptosis in C33A cells was mainly associated with the activation of caspase-3. These results support previous findings on TQ as a potential therapeutic agent for human cervical cancer.
    Matched MeSH terms: Caspase 3/metabolism
  8. Hajrezaie M, Paydar M, Moghadamtousi SZ, Hassandarvish P, Gwaram NS, Zahedifard M, et al.
    ScientificWorldJournal, 2014;2014:540463.
    PMID: 24737979 DOI: 10.1155/2014/540463
    Metal-based drugs with extensive clinical applications hold great promise for the development of cancer chemotherapeutic agents. In the last few decades, Schiff bases and their complexes have become well known for their extensive biological potential. In the present study, we examined the antiproliferative effect of a copper (II) complex on HT-29 colon cancer cells. The Cu(BrHAP)2 Schiff base compound demonstrated a potent antiproliferative effect in HT-29 cells, with an IC50 value of 2.87  μg/ml after 72 h of treatment. HT-29 cells treated with Cu (II) complexes underwent apoptosis death, as exhibited by a progressive elevation in the proportion of the G1 cell population. At a concentration of 6.25  μg/ml, the Cu(BrHAP)2 compound caused significant elevation in ROS production following perturbation of mitochondrial membrane potential and cytochrome c release, as assessed by the measurement of fluorescence intensity in stained cells. Furthermore, the activation of caspases 3/7 and 9 was part of the Cu (II) complex-induced apoptosis, which confirmed the involvement of mitochondrial-mediated apoptosis. Meanwhile, there was no significant activation of caspase-8. Taken together, these results imply that the Cu(BrHAP)2 compound is a potential candidate for further in vivo and clinical colon cancer studies to develop novel chemotherapeutic agents derived from metal-based agents.
    Matched MeSH terms: Caspase 3/metabolism
  9. Kadir FA, Kassim NM, Abdulla MA, Yehye WA
    PMID: 24305067 DOI: 10.1186/1472-6882-13-343
    Hepatocellular carcinoma is a common type of tumour worldwide with a high mortality rate and with low response to current cytotoxic and chemotherapeutic drugs. The prediction of activity spectra for the substances (PASS) software, which predicted that more than 300 pharmacological effects, biological and biochemical mechanisms based on the structural formula of the substance was efficiently used in this study to reveal new multitalented actions for Vitex negundo (VN) constituents.
    Matched MeSH terms: Caspase 3/metabolism
  10. Ooi KL, Muhammad TS, Sulaiman SF
    J Ethnopharmacol, 2013 Oct 28;150(1):382-8.
    PMID: 24051023 DOI: 10.1016/j.jep.2013.09.014
    Physalin F (a secosteroid derivative), is well recognized as a potent anticancer compound from Physalis minima L., a plant that is traditionally used to treat cancer. However, the exact molecular anticancer mechanism remains to be elucidated.
    Matched MeSH terms: Caspase 3/genetics
  11. Al-Qubaisi MS, Rasedee A, Flaifel MH, Ahmad SH, Hussein-Al-Ali S, Hussein MZ, et al.
    Int J Nanomedicine, 2013;8:2497-508.
    PMID: 23885175 DOI: 10.2147/IJN.S42367
    In this study, in vitro cytotoxicity of nickel zinc (NiZn) ferrite nanoparticles against human colon cancer HT29, breast cancer MCF7, and liver cancer HepG2 cells was examined. The morphology, homogeneity, and elemental composition of NiZn ferrite nanoparticles were investigated by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy, respectively. The exposure of cancer cells to NiZn ferrite nanoparticles (15.6-1,000 μg/mL; 72 hours) has resulted in a dose-dependent inhibition of cell growth determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The quantification of caspase-3 and -9 activities and DNA fragmentation to assess the cell death pathway of the treated cells showed that both were stimulated when exposed to NiZn ferrite nanoparticles. Light microscopy examination of the cells exposed to NiZn ferrite nanoparticles demonstrated significant changes in cellular morphology. The HepG2 cells were most prone to apoptosis among the three cells lines examined, as the result of treatment with NiZn nanoparticles. In conclusion, NiZn ferrite nanoparticles are suggested to have potential cytotoxicity against cancer cells.
    Matched MeSH terms: Caspase 3/metabolism
  12. Aisha AF, Abu-Salah KM, Ismail Z, Majid AM
    Molecules, 2012;17(3):2939-54.
    PMID: 22402764 DOI: 10.3390/molecules17032939
    Despite the progress in colon cancer treatment, relapse is still a major obstacle. Hence, new drugs or drug combinations are required in the battle against colon cancer. α-Mangostin and betulinic acid (BA) are cytotoxic compounds that work by inducing the mitochondrial apoptosis pathway, and cisplatin is one of the most potent broad spectrum anti-tumor agents. This study aims to investigate the enhancement of BA cytotoxicity by α-mangostin, and the cytoprotection effect of α-mangostin and BA on cisplatin-induced cytotoxicity on HCT 116 human colorectal carcinoma cells. Cytotoxicity was investigated by the XTT cell proliferation test, and the apoptotic effects were investigated on early and late markers including caspases-3/7, mitochondrial membrane potential, cytoplasmic shrinkage, and chromatin condensation. The effect of α-mangostin on four signalling pathways was also investigated by the luciferase assay. α-Mangostin and BA were more cytotoxic to the colon cancer cells than to the normal colonic cells, and both compounds showed a cytoprotective effect against cisplatin-induced cytotoxicity. On the other hand, α-mangostin enhanced the cytotoxic and apoptotic effects of BA. Combination therapy hits multiple targets, which may improve the overall response to the treatment, and may reduce the likelihood of developing drug resistance by the tumor cells. Therefore, α-mangostin and BA may provide a novel combination for the treatment of colorectal carcinoma. The cytoprotective effect of the compounds against cisplatin-induced cytotoxicity may find applications as chemopreventive agents against carcinogens, irradiation and oxidative stress, or to neutralize cisplatin side effects.
    Matched MeSH terms: Caspase 3/metabolism
  13. Syam S, Abdul AB, Sukari MA, Mohan S, Abdelwahab SI, Wah TS
    Molecules, 2011 Aug 23;16(8):7155-70.
    PMID: 21862957 DOI: 10.3390/molecules16087155
    Murraya koenigii is an edible herb widely used in folk medicine. Here we report that girinimbine, a carbazole alkaloid isolated from this plant, inhibited the growth and induced apoptosis in human hepatocellular carcinoma, HepG2 cells. The MTT and LDH assay results showed that girinimbine decreased cell viability and increased cytotoxicity in a dose-and time-dependent manner selectively. Girinimbine-treated HepG2 cells showed typical morphological features of apoptosis, as observed from normal inverted microscopy and Hoechst 33342 assay. Furthermore, girinimbine treatment resulted in DNA fragmentation and elevated levels of caspase-3 in HepG2 cells. Girinimbine treatment also displayed a time-dependent accumulation of the Sub-G(0)/G(1) peak (hypodiploid) and caused G(0)/G(1)-phase arrest. Together, these results demonstrated for the first time that girinimbine could effectively induce programmed cell death in HepG2 cells and suggests the importance of conducting further investigations in preclinical human hepatocellular carcinoma models, especially on in vivo efficacy, to promote girinimbine for use as an anticancer agent against hepatocellular carcinoma.
    Matched MeSH terms: Caspase 3/metabolism
  14. Yaacob NS, Hamzah N, Nik Mohamed Kamal NN, Zainal Abidin SA, Lai CS, Navaratnam V, et al.
    PMID: 20684795 DOI: 10.1186/1472-6882-10-42
    The leaves of Strobilanthes crispus (S. crispus) which is native to the regions of Madagascar to the Malay Archipelago, are used in folk medicine for their antidiabetic, diuretic, anticancer and blood pressure lowering properties. Crude extracts of this plant have been found to be cytotoxic to human cancer cell lines and protective against chemically-induced hepatocarcinogenesis in rats. In this study, the cytotoxicity of various sub-fractions of dichloromethane extract isolated from the leaves of S. crispus was determined and the anticancer activity of one of the bioactive sub-fractions, SC/D-F9, was further analysed in breast and prostate cancer cell lines.
    Matched MeSH terms: Caspase 3/metabolism
  15. Oskoueian E, Abdullah N, Ahmad S
    Int J Mol Sci, 2012;13(11):13816-29.
    PMID: 23203036 DOI: 10.3390/ijms131113816
    The direct feeding of Jatropha meal containing phorbol esters (PEs) indicated mild to severe toxicity symptoms in various organs of different animals. However, limited information is available on cellular and molecular mechanism of toxicity caused by PEs present in Jatropha meal. Thus, the present study was conducted to determine the cytotoxic and mode of action of PEs isolated from Jatropha meal using human hepatocyte (Chang) and African green monkey kidney (Vero) cell lines. The results showed that isolated PEs inhibited cell proliferation in a dose-dependent manner in both cell lines with the CC(50) of 125.9 and 110.3 μg/mL, respectively. These values were compatible to that of phorbol 12-myristate 13-acetate (PMA) values as positive control i.e., 124.5 and 106.3 μg/mL respectively. Microscopic examination, flow cytometry and DNA fragmentation results confirmed cell death due to apoptosis upon treatment with PEs and PMA at CC(50) concentration for 24 h in both cell lines. The Western blot analysis revealed the overexpression of PKC-δ and activation of caspase-3 proteins which could be involved in the mechanism of action of PEs and PMA. Consequently, the PEs isolated form Jatropha meal caused toxicity and induced apoptosis-mediated proliferation inhibition toward Chang and Vero cell lines involving over-expression of PKC-δ and caspase-3 as their mode of actions.
    Matched MeSH terms: Caspase 3/metabolism
  16. Arfuzir NN, Lambuk L, Jafri AJ, Agarwal R, Iezhitsa I, Sidek S, et al.
    Neuroscience, 2016 06 14;325:153-64.
    PMID: 27012609 DOI: 10.1016/j.neuroscience.2016.03.041
    Vascular dysregulation has long been recognized as an important pathophysiological factor underlying the development of glaucomatous neuropathy. Endothelin-1 (ET1) has been shown to be a key player due to its potent vasoconstrictive properties that result in retinal ischemia and oxidative stress leading to retinal ganglion cell (RGC) apoptosis and optic nerve (ON) damage. In this study we investigated the protective effects of magnesium acetyltaurate (MgAT) against retinal cell apoptosis and ON damage. MgAT was administered intravitreally prior to, along with or after administration of ET1. Seven days post-injection, animals were euthanized and retinae were subjected to morphometric analysis, TUNEL and caspase-3 staining. ON sections were stained with toluidine blue and were graded for neurodegenerative effects. Oxidative stress was also estimated in isolated retinae. Pre-treatment with MgAT significantly lowered ET1-induced retinal cell apoptosis as measured by retinal morphometry and TUNEL staining. This group of animals also showed significantly lesser caspase-3 activation and significantly reduced retinal oxidative stress compared to the animals that received intravitreal injection of only ET1. Additionally, the axonal degeneration in ON was markedly reduced in MgAT pretreated animals. The animals that received MgAT co- or post-treatment with ET1 also showed improvement in all parameters; however, the effects were not as significant as observed in MgAT pretreated animals. The current study showed that the intravitreal pre-treatment with MgAT reduces caspase-3 activation and prevents retinal cell apoptosis and axon loss in ON induced by ET1. This protective effect of ET1 was associated with reduced retinal oxidative stress.
    Matched MeSH terms: Caspase 3/metabolism
  17. Zhiping H, Imam MU, Ismail M, Ismail N, Yida Z, Ideris A, et al.
    Food Funct, 2015 May;6(5):1701-11.
    PMID: 25920003 DOI: 10.1039/c5fo00226e
    The aim of this research is to investigate whether edible bird's nest (EBN) attenuates cortical and hippocampal neurodegeneration in ovariectomized rats. Ovariectomized rats were randomly divided into seven experimental groups (n = 6): the ovariectomy (OVX) group had their ovaries surgically removed; the sham group underwent surgical procedure similar to OVX group, but ovaries were left intact; estrogen group had OVX and received estrogen therapy (0.2 mg kg(-1) per day); EBN treatment groups received 6%, 3%, and 1.5% EBN, respectively. Control group was not ovariectomized. After 12 weeks of intervention, biochemical assays were performed for markers of neurodegeneration, and messenger ribonucleic acid (mRNA) levels of oxidative stress-related genes in the hippocampus and frontal cortex of the brain were analysed. Caspase 3 (cysteine-aspartic proteases 3) protein levels in the hippocampus and frontal cortex were also determined using western blotting. The results show that EBNs significantly decreased estrogen deficiency-associated serum elevation of advanced glycation end-products (AGEs), and they changed redox status as evidenced by oxidative damage (malondialdehyde content) and enzymatic antioxidant defense (superoxide dismutase and catalase) markers. Furthermore, genes associated with neurodegeneration and apoptosis were downregulated in the hippocampus and frontal cortex by EBN supplementation. Taken together, the results suggest that EBN has potential for neuroprotection against estrogen deficiency-associated senescence, at least in part via modification of the redox system and attenuation of AGEs.
    Matched MeSH terms: Caspase 3/metabolism
  18. Mohd-Salleh SF, Wan-Ibrahim WS, Ismail N
    Nutr Cancer, 2020;72(5):826-834.
    PMID: 31433251 DOI: 10.1080/01635581.2019.1654530
    Introduction:Pereskia bleo is a leafy and edible plant, locally known as "Pokok Jarum Tujuh Bilah" which has anticancer properties. This study purposed to determine the cytotoxic effects of P. bleo leaves extracts on several well-known cancer cells and elucidate its underlying mechanism in inducing cell death.Methods: Cytotoxic activity on selected cell lines was determined using MTT assay. Mechanism of cell death was investigated through cell cycle and Annexin V assay. Expression of apoptotic proteins was measured by flow cytometry method.Results: Ethyl acetate extract of P. bleo leaves (PBEA) appeared to have the strongest IC50 value (14.37 ± 8.40 μg/ml) and most active against HeLa cells was further studied for apoptosis. The cell cycle investigation by flow cytometry evidenced the increment of PBEA treated HeLa cells in G0/G1 phase and apoptotic event was detected in Annexin V assay. Analysis of apoptotic protein showed pro-apoptotic proteins (Bax, p53 and caspase 3) were triggered where as anti-apoptotic protein Bcl-2 was suppressed in treated HeLa cells.Conclusions: Our findings demonstrated that PBEA treatment induced cell death in HeLa cells by p53-mediated mechanism through arresting cell cycle at G0/G1 phase and mitochondrial-mediated pathway with involvement of pro-apoptotic proteins, anti-apoptotic protein, and caspase 3.
    Matched MeSH terms: Caspase 3/metabolism
  19. Nassar ZD, Aisha AF, Al Suede FS, Abdul Majid AS, Abdul Majid AM
    Biol Pharm Bull, 2012;35(4):503-8.
    PMID: 22466553
    Breast cancer is the most common cancer in women, and it can metastasize very rapidly. Tumor metastasis is the primary cause of cancer deaths. In the present study, we investigated the capability of koetjapic acid, a natural triterpene, in the induction of apoptosis and the inhibition of metastasis in the breast cancer cell line (MCF 7). The effects of koetjapic acid against 4 steps of metastasis have been assessed, including cell survival, clonogenicity, migration and invasion. Koetjapic acid exhibited cytotoxic activity against MCF 7 cells with an IC(50) of 68.88±6.075 μg/mL. The mechanism of cell death was confirmed due to the induction of apoptosis machineries; early and late apoptosis-related changes were detected, including the stimulation of caspase 3/7 activities, apoptosis-related morphological changes such as membrane blebbing, chromatin condensation and DNA fragmentation. A mitochondrial apoptosis pathway was found to be involved in koetjapic acid-induced cell death induction. Moreover, at a sub-toxic dose (15 μg/mL), Koetjapic acid inhibited cell migration and invasion significantly. Finally, koetjapic acid inhibited the colony formation properties of MCF 7 significantly. These results indicate that koetjapic acid possesses significant antitumor and antimetastatic effects, and warrants further investigation.
    Matched MeSH terms: Caspase 3/metabolism
  20. Abushaala NM, Elfituri AM, Zulkifli SZ
    Open Vet J, 2021 02 08;11(1):112-120.
    PMID: 33898292 DOI: 10.4314/ovj.v11i1.17
    Background: Several types of research have been recently carried out on the biological effects of TBTs, including investigations of genitals in invertebrates in response to exposure to TBTs in marine water.

    Aim: The objective of this research was to investigate the acute effects of tributyltin chloride (TBTCl) on gonads in the adult stage of Artemia salina by use normal histology and immunohistochemistry (IHC) (Caspase 3 and HSP70) to see specific apoptosis markers.

    Methods: After exposure of A. salina to different concentrations of TBTCl (25, 50, 100, 200, and 300 ng.l-1), 50 adult A. salina (25 male and 25 female) were selected randomly from each concentration to histologically study the gonads. The gonad tissue was sectioned (5 μm) and some slides were stained with hematoxylin and eosin and others were stained with IHC avidin-biotin complex, and were examined under a light microscope.

    Results: The results showed significant differences (p < 0.05) in histological lesions between different concentrations of TBTCl. The histological lesions in the testis and ovary section were undifferentiated cells, degenerating yolk globules, and follicle cells enveloping the oocyte which was then compared with control tissue, and these effects were found to be increased in females more than in males with the highest concentration of TBTCl. Immunohistochemistry (IHC) showed that positive immunostaining was observed in the testis and ovary as brownish deposits to Caspase 3 and HSP70 antibody after exposure to TBTCl, while the testis and ovary section in control tissue had no immunoreactivity to Caspase 3 and HSP70 antibody; these effects were profoundly increased with the highest concentration of TBTCl in females more than in males. Finally, the histological lesions and IHC (Caspase 3 and HSP70) revealed that the apoptosis and immune system stress of A. salina gonad tissue damage in females were more sensitive to TBTCl toxicity as compared to white males.

    Conclusion: In general, the present study aimed to observe the effects TBTCl on A. salina gonads by using histological sections and IHC (Caspase 3 and HSP70), which were evaluated for the first time and have been proven to possess an important function in apoptosis marker and immune system stress in Artemia. Finally, the specific mechanisms through which TBTCl affects A. salina Caspase 3 and HSP70 expression need further investigation.

    Matched MeSH terms: Caspase 3/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links