AIM OF THIS REVIEW: The present study is a critical assessment of the state-of-the-art concerning the traditional uses, the phytochemistry and the pharmacology of species belonging to the genus Hedyosmum to suggest further research strategies and to facilitate the exploitation of the therapeutic potential of Hedyosmum species for the treatment of human disorders.
MATERIALS AND METHODS: The present review consists of a systematic overview of scientific literature concerning the genus Hedyosmum published between 1965 and 2018. Moreover, an older text, dated from 1843, concerning the traditional uses of H. bonplandianum Kunth has also been considered. Several databases (Francis & Taylor, Google Scholar, PubMed, SciELO, SciFinder, Springer, Wiley, and The Plant List Database) have been used to perform this work.
RESULTS: Sixteen species of the genus Hedyosmum have been mentioned as traditional remedies, and a large number of ethnomedicinal uses, including for the treatment of pain, depression, migraine, stomach-ache and ovary diseases, have been reported. Five species have been used as flavouring agents, tea substitutes or foods. Sesterterpenes, sesquiterpene lactones, monoterpenes, hydroxycinnamic acid derivatives, flavonoids, and neolignans have been reported as the most important compounds in these species. Studies concerning their biological activities have shown that members of the Hedyosmum genus possesses promising biological properties, such as analgesic, antinociceptive, antidepressant, anxiolytic, sedative, and hypnotic effects. Preliminary studies concerning the antibacterial, antioxidant, antiplasmodial, and antifungal activities of these plants as well as their cytotoxic activities against different tumour cell lines have been reported. Some active compounds from the Hedyosmum genus have been used as starting points for the innovative and bioinspired development of synthetic molecules. A critical assessment of these papers has been performed, and some conceptual and methodological problems have been identified regarding the materials and methods and the experimental design used in these studies, including a lack of ethnopharmacological research.
CONCLUSIONS: The present review partially confirms the basis for some of the traditional uses of Hedyosmum species (mainly H. brasiliense) through preclinical studies that demonstrated their antinociceptive and neuroprotective effects. Due to promising preliminary results, further studies should be conducted on 13-hydroxy-8,9-dehydroshizukanolide and podoandin. Moreover, several essential oils (EOs) from this genus have been preliminarily investigated, and the cytotoxic and antibacterial activities of H. brasiliense and H. sprucei EOs certainly deserve further investigation. From the promising findings of the present analysis, we can affirm that this genus deserves further research from ethnopharmacological and toxicological perspectives.
METHODS: E. elatior flowers grown in three different locations of Malaysia (Kelantan, Pahang and Johor), were investigated for differences in their content of secondary metabolites (total phenolics [TPC], total flavonoids [TFC], and total tannin content [TTC]) as well as for their antioxidant, anticancer, and antibacterial properties. Phenolic acids and flavonoids were isolated and identified using ultra-high performance liquid chromatography (UHPLC). Ferric reducing antioxidant potential (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays were used to evaluate the antioxidant activities. The anticancer activity of extracts was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay.
RESULTS: When extracted with various solvents (aqueous and ethanolic), samples from the different locations yielded significantly different results for TPC, TFC, and TTC as well as antioxidant activity. Aqueous extracts of E. elatior flowers collected from Kelantan exhibited the highest values: TPC (618.9 mg/100 g DM), TFC (354.2 mg/100 g DM), TTC (129.5 mg/100 g DM), DPPH (76.4 %), and FRAP (6.88 mM of Fe (II)/g) activity with a half-maximal inhibitory concentration (IC50) of 34.5 μg/mL compared with extracts of flowers collected from the other two locations. The most important phenolic compounds isolated in this study, based on concentration, were: gallic acid > caffeic acid > tannic acid > chlorogenic acid; and the most important flavonoids were: quercetin > apigenin > kaempferol > luteolin > myricetin. Extracts of flowers from Kelantan exhibited potent anticancer activity with a IC50of 173.1 and 196.2 μg/mL against the tumor cell lines MCF-7 and MDA-MB-231 respectively, compared with extracts from Pahang (IC50 = 204.5 and 246.2 μg/mL) and Johor samples (IC50 = 277.1 and 296.7 μg/mL). Extracts of E. elatior flowers also showed antibacterial activities against Staphylococcus aureus, Bacillus subtilis, Listeria monocytogenes, Escherichia coli, Salmonella typhimurium, and Pseudomonas aeruginosa with minimal inhibitory concentrations (MIC) ranging from 30 to >100 μg/mL.
CONCLUSIONS: In general, therefore, based on the potent antioxidant and anticancer activity of flower extracts, it appears that E. elatior grown in the North-east of Malaysia (Kelantan) is a potential source of therapeutic compounds with anti-cancer activity.