Displaying publications 41 - 60 of 79 in total

Abstract:
Sort:
  1. Siti Roha, A.M., Zainal, S., Noriham, A., Nadzirah, K.Z.
    MyJurnal
    Pineapple waste is a by-product resulting from canning processing of pineapple that produce about 35% of fruit waste and lead to serious environmental pollution. Pineapple waste contains valuable nutrient components of simple sugar such as sucrose, glucose and fructose. Analysis of sugar content is important for further processing such as fermentation. The aim of this study was to determine the amount of sugar in different parts of pineapple waste (peel, core and crown) from variety N36. The selected pineapple waste for maturity indices 1, 2 and 3 was cut into small pieces before crushed in a food processor. The crushed waste was then filtered through muslin cloth followed by membrane filter 0.45μm to produce pineapple waste extract. Sugar content was determined using High Performance Liquid Chromatography. It was found that fructose content was significantly higher in core (2.24%) followed by peel (2.04%) and crown (0.87%). It was also found that glucose content was significantly higher in core (2.56%) followed by peel (2.18%) and crown (0.53%). Significant difference (p < 0.05) was found for sucrose content between pineapple core and peel extract with the value of 8.92% and 3.87%, respectively. However, sucrose was not detected in pineapple crown. It means that pineapple core extract had the highest values of fructose, glucose and sucrose compared to the other parts of pineapple waste extract. Besides, it was found that sucrose content was significantly higher in pineapple core for index 3 as compared to indices 1 and 2. Glucose and fructose was significantly higher in pineapple core for index 2 compared to indices 1 and 3.
    Matched MeSH terms: Ananas
  2. Nor, M. Z. M., Ramchandran, L., Duke, M., Vasiljevic, T.
    MyJurnal
    About 60% of world’s commercial enzyme products are proteases, giving promising opportunity
    to derive such enzymes sustainably from waste sources. Bromelain is a crude protease occurring
    naturally in pineapple, and it possesses properties of benefit for pharmaceutical, medical and food products. The production of bromelain involves a purification stage, normally performed by small-scale conventional operations which lead to high operating cost and low product recovery, while being difficult to scale up and produce polluting by-products. Membrane-based technology offers an alternative to produce high quality purified bromelain in a more efficient and sustainable process. This review identified the current state and future needs for utilising membrane processes for sustainable bromelain production at larger scales. It was found that declining membrane flux due to fouling have been reported, but may be effectively overcome with more appropriate (and advanced) membrane types and/or processing conditions. For example, interactions between macromolecules present in the pineapple derived bromelain mixture (particularly polysaccharides) and the membrane may cause performance limiting fouling, but can be overcome by enzymatic pre-treatment. Membrane fouling can be further reduced by the employment of ceramic membrane filters operating at optimised trans-membrane pressure, cross-flow velocity, feed pH and temperature. Two-stage ultrafiltration together with diafiltration or gas sparging was suggested as a means to reduce fouling and improve enzyme purity. Despite these promising technical findings, the review identified the need for a valid economic assessment to properly guide further work towards purifying bromelain from pineapple waste for sustainable production of commercial proteases.
    Matched MeSH terms: Ananas
  3. Azarakhsh, N., Azizah, O., Ghazali H.M., Tan, C.P., Mohd Adzahan, N.
    MyJurnal
    The effects of alginate-based [sodium alginate, 0-2% (w/v), glycerol, 0-2% (w/v) and sunflower oil 0.025% (w/v)] and gellan-based [gellan, 0-1% (w/v), glycerol, 0-1% (w/v) and sunflower oil 0.025% (w/v)] edible coatings on fresh-cut pineapple were evaluated by response surface methodology (RSM). Weight loss, firmness and respiration rate were considered as response variables. The results showed that for all response variables the RSM models were significantly (p0.05) difference between predicted and experimental values. The overall optimum region predicted by RSM indicated that alginate and gellan-based coatings containing 1.29% (w/v) sodium alginate, 1.16% (w/v) glycerol and 0.56% (w/v) gellan gum, 0.89% (w/v) glycerol were optimized formulations respectively.
    Matched MeSH terms: Ananas
  4. Rathnavelu V, Alitheen NB, Sohila S, Kanagesan S, Ramesh R
    Biomed Rep, 2016 Sep;5(3):283-288.
    PMID: 27602208
    Pineapple has been used as part of traditional folk medicine since ancient times and it continues to be present in various herbal preparations. Bromelain is a complex mixture of protease extracted from the fruit or stem of the pineapple plant. Although the complete molecular mechanism of action of bromelain has not been completely identified, bromelain gained universal acceptability as a phytotherapeutic agent due to its history of safe use and lack of side effects. Bromelain is widely administered for its well-recognized properties, such as its anti-inflammatory, antithrombotic and fibrinolytic affects, anticancer activity and immunomodulatory effects, in addition to being a wound healing and circulatory improvement agent. The current review describes the promising clinical applications and therapeutic properties of bromelain.
    Matched MeSH terms: Ananas
  5. Marrero G, Schneider KL, Jenkins DM, Alvarez AM
    Int J Syst Evol Microbiol, 2013 Sep;63(Pt 9):3524-3539.
    PMID: 24003072 DOI: 10.1099/ijs.0.046490-0
    Bacterial heart rot of pineapple reported in Hawaii in 2003 and reoccurring in 2006 was caused by an undetermined species of Dickeya. Classification of the bacterial strains isolated from infected pineapple to one of the recognized Dickeya species and their phylogenetic relationships with Dickeya were determined by a multilocus sequence analysis (MLSA), based on the partial gene sequences of dnaA, dnaJ, dnaX, gyrB and recN. Individual and concatenated gene phylogenies revealed that the strains form a clade with reference Dickeya sp. isolated from pineapple in Malaysia and are closely related to D. zeae; however, previous DNA-DNA reassociation values suggest that these strains do not meet the genomic threshold for consideration in D. zeae, and require further taxonomic analysis. An analysis of the markers used in this MLSA determined that recN was the best overall marker for resolution of species within Dickeya. Differential intraspecies resolution was observed with the other markers, suggesting that marker selection is important for defining relationships within a clade. Phylogenies produced with gene sequences from the sequenced genomes of strains D. dadantii Ech586, D. dadantii Ech703 and D. zeae Ech1591 did not place the sequenced strains with members of other well-characterized members of their respective species. The average nucleotide identity (ANI) and tetranucleotide frequencies determined for the sequenced strains corroborated the results of the MLSA that D. dadantii Ech586 and D. dadantii Ech703 should be reclassified as Dickeya zeae Ech586 and Dickeya paradisiaca Ech703, respectively, whereas D. zeae Ech1591 should be reclassified as Dickeya chrysanthemi Ech1591.
    Matched MeSH terms: Ananas/microbiology
  6. Hameed BH, Krishni RR, Sata SA
    J Hazard Mater, 2009 Feb 15;162(1):305-11.
    PMID: 18573607 DOI: 10.1016/j.jhazmat.2008.05.036
    In this paper, pineapple stem (PS) waste, an agricultural waste available in large quantity in Malaysia, was utilized as low-cost adsorbent to remove basic dye (methylene blue, MB) from aqueous solution by adsorption. Batch mode experiments were conducted at 30 degrees C to study the effects of initial concentration of methylene blue, contact time and pH on dye adsorption. Equilibrium adsorption isotherms and kinetic were investigated. The experimental data were analyzed by the Langmuir and Freundlich models and the isotherm data fitted well to the Langmuir isotherm with monolayer adsorption capacity of 119.05mg/g. The kinetic data obtained at different concentrations were analyzed using a pseudo-first-order and pseudo-second-order equation and intraparticle diffusion equation. The experimental data fitted very well the pseudo-second-order kinetic model. The PS was found to be very effective adsorbent for MB adsorption.
    Matched MeSH terms: Ananas/chemistry*
  7. Ying S, Lasekan O, Naidu KR, Lasekan S
    Molecules, 2012 Nov 22;17(12):13795-812.
    PMID: 23174897 DOI: 10.3390/molecules171213795
    Sensorial analysis of pineapple breads (conventionally baked, Cpb; fully baked frozen, Fpb and partially baked, Ppb) showed no significant differences in terms of aroma and taste. On the contrary, the scores for the overall quality between the partially baked and conventionally baked breads showed significant (p < 0.05) differences. At the same time, headspace analysis using a solid-phase microextraction (SPME) method identified 59 volatile compounds. The results of the aroma extracts dilution analysis (AEDA) revealed 19 most odour-active compounds with FD factors in the range of 32-128 as the key odourants of the pineapple breads. Further analysis of the similarities and differences between the pineapple breads in terms of the key odourants were carried out by the application of PLS-DA and PLS-regression coefficients. Results showed that Ppb exhibited strong positive correlations with most of the volatile- and non-volatile compounds, while the Cpb showed significant positive correlations with hexanal and 4-hydroxy-2,5-dimethyl-3(2H)-furanone, and the Fpb had strong positive correlations with lactic acid, benzoic acid, benzaldehyde and ethyl propanoate.
    Matched MeSH terms: Ananas/chemistry*
  8. Ahmed OH, Husni MH, Anuar AR, Hanafi MM
    ScientificWorldJournal, 2004 Nov 20;4:1007-13.
    PMID: 15578124
    Due to the 1997/98 haze problem in South-East Asia and the increasing need for sustainable food production and development, the usual management of crop residues (including pineapple wastes) through burning is prohibited. As a result, the need for alternative uses of pineapple wastes in pineapple production has been emphasized. This study investigated an environmentally friendly means of recycling pineapple leaves for agricultural use. Pineapple leaves were shredded and composted in a composting drum for 30 days. Part of the shredded leaves was ashed in a muffle furnace for 4 h. Humic acid (HA), K-fulvate, and K in HA and compost were analyzed using standard procedures. An ash to water ratio of 1:7 was used to extract 0.1 molar (M) KOH from the shredded leaves. The 0.1 M KOH contained 50% K and was able to extract 20% HA from the composted pineapple leaves. Percent K in the fulvate using 0.1 M KOH was 43. Besides serving as a foliar spray (supplement soil application K fertilizers), source of K for freshwater fish (e.g., tilapia), the HA produced can be used as a soil conditioner. Studies show that between 0.05-0.01 g of HA per kg soil retards runoff by 36% in sandy and sandy loam soils. The K-fulvate can be used as a fluid fertilizer. In addition, the pH of 2 of the K-fulvate suggests it could be used to dissolve phosphate rocks, particularly those in the arid regions where high soil pH does not facilitate the dissolution of these important rocks that serve as one of the sources of phosphorus fertilizer in agriculture.
    Matched MeSH terms: Ananas/chemistry*
  9. Hapiz A, Jawad AH, Wilson LD, ALOthman ZA
    Int J Phytoremediation, 2024 Feb;26(3):324-338.
    PMID: 37545130 DOI: 10.1080/15226514.2023.2241912
    In this investigation, microwave irradiation assisted by ZnCl2 was used to transform pineapple crown (PN) waste into mesoporous activated carbon (PNAC). Complementary techniques were employed to examine the physicochemical characteristics of PNAC, including BET, FTIR, SEM-EDX, XRD, and pH at the point-of-zero-charge (pHpzc). PNAC is mesoporous adsorbent with a surface area of 1070 m2/g. The statistical optimization for the adsorption process of two model cationic dyes (methylene blue: MB and, crystal violet: CV) was conducted using the response surface methodology-Box-Behnken design (RSM-BBD). The parameters include solution pH (4-10), contact time (2-12) min, and PNAC dosage (0.02-0.1 g/100 mL). The Freundlich and Langmuir models adequately described the dye adsorption isotherm results for the MB and CV systems, whereas the pseudo-second order kinetic model accounted for the time dependent adsorption results. The maximum adsorption capacity (qmax) for PNAC with the two tested dyes are listed: 263.9 mg/g for CV and 274.8 mg/g for MB. The unique adsorption mechanism of MB and CV dyes by PNAC implicates multiple contributions to the adsorption process such as pore filling, electrostatic forces, H-bonding, and π-π interactions. This study illustrates the possibility of transforming PN into activated carbon (PNAC) with the potential to remove two cationic dyes from aqueous media.
    Matched MeSH terms: Ananas*
  10. Le VT, Leelakriangsak M, Lee SW, Panphon S, Utispan K, Koontongkaew S
    Braz J Microbiol, 2019 Jan;50(1):33-42.
    PMID: 30637641 DOI: 10.1007/s42770-018-0014-5
    Antibacterial activity of cell-free supernatant from Escherichia coli E against selected pathogenic bacteria in food and aquaculture was the highest against Edwardsiella tarda 3, a significant aquaculture pathogen. Biochemical properties of the bacteriocins were studied and bacteriocin was found to be sensitive to proteinase K, demonstrating its proteinaceous nature. In addition, pH and temperature affected bacteriocin activity and stability. The bacteriocins were partially purified by ammonium sulfate precipitation. The antibacterial activity was only detected in 20% ammonium sulfate fraction and direct detection of its activity was performed by overlaying on the indicator strains. The inhibition zone associated with the antibacterial activity was detected in the sample overlaid by E. tarda 3 and Staphylococcus aureus DMST8840 with the relative molecular mass of about 27 kDa and 10 kDa, respectively. Bacteriocin showed no cytotoxic effect on NIH-3T3 cell line; however, two virulence genes, aer and sfa, were detected in the genome of E. coli E by PCR. The characteristics of bacteriocins produced by E. coli E exhibited the antibacterial activity against both Gram-positive and Gram-negative pathogenic bacteria and the safe use determined by cytotoxicity test which may have interesting biotechnological applications.
    Matched MeSH terms: Ananas/metabolism; Ananas/microbiology*
  11. Syaidatul Faraha Zainuddin, Siti Raihan Zakaria, Norashikin Saim, Rossuriati Dol Hamid, Rozita Osman
    Science Letters, 2020;14(2):58-70.
    MyJurnal
    Headspace solid phase microextraction (HS-SPME) was employed for the extraction of volatile organic compounds (VOCs) in MD2 pineapple (Ananas comosus L. var. comosus cv. MD2). Optimisation of HS-SPME operating parameters was conducted using three-factor, three-level Box–Behnken response surface experimental design to evaluate the interactive effects of temperature (30 – 50 ºC), extraction time (10 – 30 min) and salting effect (1 – 3 g of salt addition) on the amount of selected VOCs. Determination of VOCs was done using gas chromatography with spectrometry detector (GC-MSD). Extraction temperature was found to be significant (p < 0.05) in increasing the amount of selected VOCs (ethyl acetate, methyl isobutyrate and butanoic acid methyl ester). Based on the maximum amount of these VOCs, the optimum operating extraction conditions for HS-SPME were set up at temperature of 30 °C, time of 29 min and salt addition of 1 g. The optimized HS-SPME conditions were employed for the extraction of VOCs from pineapple of different varieties.
    Matched MeSH terms: Ananas
  12. Barkat, Anumsima Ahmad, Jamal, Parveen, Azlin Suhaida Azmi, Noorbacha, Ibrahim Ali, Zulkarnain Mohamed Idris, Arbain, Dachyar
    MyJurnal
    A therapeutic approach for treating diabetes is to decrease thepost-prandial hyperglycaemia. This is done by retarding the absorption of glucose through the inhibition of carbohydrate hydrolyzing enzymes, α-amylaseand α-glucosidase, in the digestive tract. Inhibition of both enzymes helpsto reduce the glucose level in the blood of a diabetic patient. This study was aimed to investigate the production of α-glucosidase and α-amylase inhibitors from local fruit wastes (honeydew skin, banana peel, and pineapple skin) using solid state fermentation. Each of the fruit wastes was fermented with three different types of white rot fungus Phenarochaete chrysosporium(PC), Panus tigrinusM609RQY(M6) andRO209RQY(RO2)for 7 days. Sampling was carried out starting from day 4 to day 7 to determine the enzyme inhibition activity. The samples were extracted using water prior to enzyme analysis. Most of the fruit samples showed varying degree of percentage inhibition activity depending on the sampling time. Extract of fermented banana peels with RO2 on day 4 showed the higherα-glucosidase inhibition (56.57±0.32%), followed byhoneydew extract fermented with the same fungus on the same day (39.68±0.05%). Extracts of each fruit wastesample fermented with PCshowed the least α-glucosidase inhibition (below 15%). Meanwhile for α-amylase inhibition activity, the extract from fermented honeydew skins with PCon day7 showed the highest inhibition activity i.e.98.29±0.63%. The least inhibition activity (43.37±0.54%) was observed in the extract from honeydew skins fermented withM6 on day 5. All positive resultsshowed that fruit wastes could be the alternative sourcesfor antidiabetic agent especially for α-amylase and α-glucosidase inhibitors.
    Matched MeSH terms: Ananas
  13. Lasekan O, Hussein FK
    Chem Cent J, 2018 Dec 19;12(1):140.
    PMID: 30569201 DOI: 10.1186/s13065-018-0505-3
    BACKGROUND: Pineapple is highly relished for its attractive sweet flavour and it is widely consumed in both fresh and canned forms. Pineapple flavour is a blend of a number of volatile and non-volatile compounds that are present in small amounts and in complex mixtures. The aroma compounds composition may be used for purposes of quality control as well as for authentication and classification of pineapple varieties.

    RESULTS: The key volatile compounds and aroma profile of six pineapple varieties grown in Malaysia were investigated by gas chromatography-olfactometry (GC-O), gas-chromatography-mass spectrometry and qualitative descriptive sensory analysis. A total of 59 compounds were determined by GC-O and aroma extract dilution analysis. Among these compounds, methyl-2-methylbutanoate, methyl hexanoate, methyl-3-(methylthiol)-propanoate, methyl octanoate, 2,5-dimethyl-4-methoxy-3(2H)-furanone, δ-octalactone, 2-methoxy-4-vinyl phenol, and δ-undecalactone contributed greatly to the aroma quality of the pineapple varieties, due to their high flavour dilution factor. The aroma of the pineapples was described by seven sensory terms as sweet, floral, fruity, fresh, green, woody and apple-like.

    CONCLUSION: Inter-relationship between the aroma-active compounds and the pineapples revealed that 'Moris' and 'MD2' covaried majorly with the fruity esters, and the other varieties correlated with lesser numbers of the fruity esters. Hierarchical cluster analysis (HCA) was used to establish similarities among the pineapples and the results revealed three main groups of pineapples.

    Matched MeSH terms: Ananas
  14. Md Nor S, Ding P
    Food Res Int, 2020 08;134:109208.
    PMID: 32517939 DOI: 10.1016/j.foodres.2020.109208
    Nowadays, many of the tropical fruits have been commercialized worldwide due to increasing demand. In 2018, global tropical fruit has reached an unprecedented peak of 7.1 million tonnes. As such, a lot of large scale farming has been initiated to cultivate the fruit for commercialization. The nature of tropical fruit is perishable make the fruit easily undergo post-harvest losses especially when the fruit travels in a long distance for distribution. Losses of tropical fruit is estimated around 18-28% after harvesting. Then, the losses will continually develop during the trading process. Applying fruit coating on the fruit can minimize substantial privation. This article compendiously reviews the needs of coating and discuss different types of coating materials. The efficiency of different coating materials; polysaccharide, protein, lipid and composite based coating on tropical fruit is highlighted. There are various types of coating available for major fruit such as banana, mango, pineapple and avocado that can effectively extend the post-harvest life, minimize water loss, reduce chilling injuries and fight against post-harvest disease. Coating from minor fruit such as durian, rambutan, passion-fruit and mangosteen are still limited especially made from lipid and protein coating. In choosing the most appropriate coating for tropical, the nature of fruit needs to be understood. In addition, the chemistry of coating components and techniques of application is important in modulating the fruit quality.
    Matched MeSH terms: Ananas
  15. Nur Fazrina Mohamad Salleh, Ezrin Hani Sukadarin
    MyJurnal
    The prevalence of Musculoskeletal Symptoms (MSS) rapidly increases and it is recognized as a significant health outcome in agricultural sector. Agricultural ergonomics risk factor is one of hazards constantly arising from all job task activities including awkward postures and heavy lifting. Job hazard analyses (JHA) were conducted to assess the exposure of ergonomics risk factors in Malaysia Pineapple Plantation. The analyses performed involved two steps. They were: 1) guidelines and manual book Malaysia Pineapple Plantation as references; and 2) conducting walkthrough observation based on checklist approaches at the plantation. The identified risk factors were prolonged exposure of standing, squatting, stooping and kneeling, highly repetitive motion on the lower limbs, deviation and twisting of wrist and lastly, heavy lifting. The analyses confirmed that the exposure to ergonomics risk factors in pineapple plantation is high. It would be desirable to reduce the risk factors by educating and training the pineapple workers to perform their task with strong consideration of occupational safety and health.
    Matched MeSH terms: Ananas
  16. Rosnah Shamsudin, Zulkifli, N. A., ?Amanina Amani Kamarul Zaman?
    MyJurnal
    Blending or mixing two or more of fruit juices is able to improve the quality of juices as
    compared to single flavour. Pineapple and mango are among the popular tropical fruits in
    Malaysia. Despite the massive production of pineapple in Malaysia, utilisation of pineapple as
    a juice remains unpopular due to its exotic and strong flavour. Blending of pineapple with
    mango is believed to overcome this issue. Nevertheless, suitable blending ratios play important role in the end product quality. The present work aims to determine the physicochemical
    and nutritional quality of fresh blended pineapple-mango juice at different blending ratios for
    25 days of refrigerated storage (4 ± 2°C). Physicochemical (colour, pH, titratable acidity, and
    total soluble solid) and nutritional (vitamin C, total phenolic content, and total antioxidant
    content) properties of fresh pineapple-mango juice blends of ratio 80% pineapple with 20%
    mango (R80:20) and 50% pineapple with 50% mango (50:50) were determined throughout 25
    days of storage. Pineapple-mango juice blends at blending ratio of R80:20 exhibited better
    qualities in term of colour (lightness, chroma, hue, and browning index), chemical composition, and nutritional content.
    Matched MeSH terms: Ananas
  17. AIDA NADIA A.RAMLEE, WAN ZALIHA WAN SEMBOK
    MyJurnal
    Fresh-cut pineapple has experienced an increase in demand due to its great health benefits and is rich in vitamins A, B and C. Moreover, pineapple is known as a source of the enzyme bromelain, which has therapeutic applications, such as reducing inflammation, improving digestion and treating osteoarthritis. However, bromelain generally affects the pineapple’s flavour and is less preferred by consumers due to the uncomfortable prickling and tingling sensations it brings. In the present study, two types of gases and their combination, nitrogen (N2) and carbon dioxide (CO2), were used to evaluate their impacts on reducing the tingling and prickling sensations, as well as maintaining the postharvest qualities of fresh-cut pineapple stored at 5°C for 12 days. The parameters being evaluated were the bromelain enzyme activity, flesh colour, ascorbic acid concentration, flesh firmness, soluble solids concentration (SSC), titratable acidity (TA) and sensory evaluation. No significant differences were recorded for all parameters tested. Based on the sensory evaluations, all the attributes, such as colour, aroma, texture, sweetness, sourness, tingling and prickling sensations, and overall acceptance were not affected by the different gases application. Even though no apparent effect was observed, the 30 panellists preferred the aforementioned attributes, except sourness. In conclusion, the fumigation treatments with N2 and CO2 gases were not effective in reducing the tingling and prickling sensations of pineapples cv. Morris.
    Matched MeSH terms: Ananas
  18. Nadzirah, K.Z., Zainal, S., Noriham, A., Normah, I.
    MyJurnal
    Bromelain is one of the vegetal proteases found in pineapple plant. It has numerous applications in food and pharmaceuticals. This review discussed different bromelain purification techniques which will assist in determining the effect of processing conditions on the purification efficacy. There are four purification techniques to be discussed, namely; reverse micellar system, aqueous two phase extraction, cation exchange chromatography and ammonium sulphate precipitation. Of the four techniques, cation exchange chromatography had shown the best bromelain purification technique with purification fold of 10.0 followed by reverse micellar system containing CTAB/ isooctane/ hexanol/ butanol, ATPE containing PEG polymer, ammonium sulphate precipitation and ATPE containing PEO-PPO-PEO with purification fold of 5.2, 4.0, 2.81 and 1.25, respectively.
    Matched MeSH terms: Ananas
  19. MyJurnal
    Pineapple (Ananas comosus), Bromeliaceae family, is a fruit grows in tropical countries including Malaysia. This fruit has several pharmacological benefits due to the presence of high concentration of bromelain (cysteine proteases). Condition of elevated temperature will induce deformation of enzyme and result in loss of activity. Sulfhydryl groups in cysteine proteases are readily to be oxidized and might account for the denaturation of bromelain at elevated temperature. Polyphenol from ethanolic cashew leave extract could be complexed with bromelain to stabilize the enzymatic activity. In thermal stability test, the heat damage effect on bromelain was ten times reduced after complexing with cashew extract. The enzymatic activity of free bromelain decreased gradually from 25 o C to 95 o C. Complexed bromelain was stable in activity to heating up to 85 o C. Bromelainpolyphenol complex showed a good heat resistance. The result revealed that polyphenol could protect bromelain in pineapple juice from heat denaturation.
    Matched MeSH terms: Ananas
  20. Ding, P., Syazwani, S.
    MyJurnal
    Although Malaysia is one of the important pineapple fruit producing and exporting country, the production of MD-2 pineapple fruit only started in 2009. Pineapple fruit has been harvested at different ripening stages for different markets. The information on Malaysian grown MD-2 pineapple fruit quality is lacking. Therefore this work was carried out with the aim to determine physicochemical quality, antioxidant compounds and activity of MD-2 pineapple fruit at five ripening stages. Ripening stage affected physicochemical quality of MD-2 pineapple fruit. Soluble solids concentration of MD-2 pineapple fruit increased from 15.41 to 18.02% SSC when fruit ripened from stage 1 to 4 and no significant difference was found in fruit between stage 4 and 5. The ascorbic acid content decreased while total carotenoids content increased as ripening stage advanced. The total phenolic content of both 80% methanol and water extraction solvents increased significantly as fruit ripened from stage 1 to 3 and reduced as fruit ripened to stage 5. The antioxidant activity of MD-2 pineapple fruit as assayed using DPPH, FRAP and ABTS showed similar trend as total phenolic content. These results suggest that ripening stage affect MD-2 pineapple fruit quality and nutritional values.
    Matched MeSH terms: Ananas
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links