Displaying publications 41 - 44 of 44 in total

Abstract:
Sort:
  1. Gallagher D, Voronova A, Zander MA, Cancino GI, Bramall A, Krause MP, et al.
    Dev. Cell, 2015 Jan 12;32(1):31-42.
    PMID: 25556659 DOI: 10.1016/j.devcel.2014.11.031
    Ankrd11 is a potential chromatin regulator implicated in neural development and autism spectrum disorder (ASD) with no known function in the brain. Here, we show that knockdown of Ankrd11 in developing murine or human cortical neural precursors caused decreased proliferation, reduced neurogenesis, and aberrant neuronal positioning. Similar cellular phenotypes and aberrant ASD-like behaviors were observed in Yoda mice carrying a point mutation in the Ankrd11 HDAC-binding domain. Consistent with a role for Ankrd11 in histone acetylation, Ankrd11 was associated with chromatin and colocalized with HDAC3, and expression and histone acetylation of Ankrd11 target genes were altered in Yoda neural precursors. Moreover, the Ankrd11 knockdown-mediated decrease in precursor proliferation was rescued by inhibiting histone acetyltransferase activity or expressing HDAC3. Thus, Ankrd11 is a crucial chromatin regulator that controls histone acetylation and gene expression during neural development, thereby providing a likely explanation for its association with cognitive dysfunction and ASD.
    Matched MeSH terms: Protein Processing, Post-Translational
  2. Phan CW, Sabaratnam V, Bovicelli P, Righi G, Saso L
    Biofactors, 2016 Nov 12;42(6):591-599.
    PMID: 27193378 DOI: 10.1002/biof.1296
    Negletein has been shown to have therapeutic potential for inflammation-associated diseases, but its effect on neurite outgrowth is still unknown. The present study showed that negletein alone did not trigger PC12 cells to differentiate and extend neurites. When compared with the cells in the untreated control, a significant (P protein kinase B (Akt), and cAMP response element-binding protein (CREB). The growth associated protein-43 (GAP-43) and the NGF level were also upregulated by negletein (10 µM) and a low dose of NGF (5 ng/mL). Negletein at nanomolar concentration also was found to be sufficient to mediate the survival of serum-deprived PC12 cells up to 72 h. Taken together, negletein might be useful as an efficient bioactive compound to protect neurons from cell death and promote neuritogenesis. © 2016 BioFactors, 42(6):591-599, 2016.
    Matched MeSH terms: Protein Processing, Post-Translational
  3. Zainuddin A, Chua KH, Tan JK, Jaafar F, Makpol S
    J Physiol Biochem, 2017 Feb;73(1):59-65.
    PMID: 27743340 DOI: 10.1007/s13105-016-0524-2
    Human diploid fibroblasts (HDFs) proliferation in culture has been used as a model of aging at the cellular level. Growth arrest is one of the most important mechanisms responsible for replicative senescence. Recent researches have been focusing on the function of vitamin E in modulating cellular signaling and gene expression. Therefore, the aim of this study was to elucidate the effect of palm γ-tocotrienol (vitamin E) in modulating cellular aging through p16INK4a pathway in HDF cells. Primary culture of senescent HDFs was incubated with 70 μM of palm γ-tocotrienol for 24 hours. Silencing of p16INK4a was carried out by siRNA transfection. RNA was extracted from the different treatment groups and gene expression analysis was carried out by real-time reverse transcription polymerase chain reaction. Proteins that were regulated by p16INK4a were determined by western blot technique. The finding of this study showed that p16INK4a mRNA was overexpressed in senescent HDFs, and hypophosphorylated-pRb and cyclin D1 protein expressions were increased (p protein expressions (p proteins which may contribute to cell cycle arrest. Palm γ-tocotrienol may delay cellular senescence of HDFs by regulating cell cycle through downregulation of p16INK4a and hypophosphorylated-pRb and cyclin D1 protein expressions.
    Matched MeSH terms: Protein Processing, Post-Translational
  4. Garza-Manero S, Sindi AAA, Mohan G, Rehbini O, Jeantet VHM, Bailo M, et al.
    Epigenetics Chromatin, 2019 12 12;12(1):73.
    PMID: 31831052 DOI: 10.1186/s13072-019-0320-7
    BACKGROUND: Members of the HMGN protein family modulate chromatin structure and influence epigenetic modifications. HMGN1 and HMGN2 are highly expressed during early development and in the neural stem/progenitor cells of the developing and adult brain. Here, we investigate whether HMGN proteins contribute to the chromatin plasticity and epigenetic regulation that is essential for maintaining pluripotency in stem cells.

    RESULTS: We show that loss of Hmgn1 or Hmgn2 in pluripotent embryonal carcinoma cells leads to increased levels of spontaneous neuronal differentiation. This is accompanied by the loss of pluripotency markers Nanog and Ssea1, and increased expression of the pro-neural transcription factors Neurog1 and Ascl1. Neural stem cells derived from these Hmgn-knockout lines also show increased spontaneous neuronal differentiation and Neurog1 expression. The loss of HMGN2 leads to a global reduction in H3K9 acetylation, and disrupts the profile of H3K4me3, H3K9ac, H3K27ac and H3K122ac at the Nanog and Oct4 loci. At endodermal/mesodermal genes, Hmgn2-knockout cells show a switch from a bivalent to a repressive chromatin configuration. However, at neuronal lineage genes whose expression is increased, no epigenetic changes are observed and their bivalent states are retained following the loss of HMGN2.

    CONCLUSIONS: We conclude that HMGN1 and HMGN2 maintain the identity of pluripotent embryonal carcinoma cells by optimising the pluripotency transcription factor network and protecting the cells from precocious differentiation. Our evidence suggests that HMGN2 regulates active and bivalent genes by promoting an epigenetic landscape of active histone modifications at promoters and enhancers.

    Matched MeSH terms: Protein Processing, Post-Translational
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links