Displaying publications 41 - 60 of 189 in total

Abstract:
Sort:
  1. Lazim ZM, Hadibarata T
    Braz J Microbiol, 2016 Jul-Sep;47(3):610-6.
    PMID: 27287336 DOI: 10.1016/j.bjm.2016.04.015
    This study aimed to investigate the impact of nonionic surfactants on the efficacy of fluorine degradation by Polyporus sp. S133 in a liquid culture. Fluorene was observed to be degraded in its entirety by Polyporus sp. S133 subsequent to a 23-day incubation period. The fastest cell growth rate was observed in the initial 7 days in the culture that was supplemented with Tween 80. The degradation process was primarily modulated by the activity of two ligninolytic enzymes, laccase and MnP. The highest laccase activity was stimulated by the addition of Tween 80 (2443U/L) followed by mixed surfactant (1766U/L) and Brij 35 (1655U/L). UV-vis spectroscopy, TLC analysis and mass spectrum analysis of samples subsequent to the degradation process in the culture medium confirmed the biotransformation of fluorene. Two metabolites, 9-fluorenol (λmax 270, tR 8.0min and m/z 254) and protocatechuic acid (λmax 260, tR 11.3min and m/z 370), were identified in the treated medium.
    Matched MeSH terms: Polyethylene Glycols
  2. Yeh CC, Muduli S, Peng IC, Lu YT, Ling QD, Alarfaj AA, et al.
    Data Brief, 2016 Mar;6:603-8.
    PMID: 26909373 DOI: 10.1016/j.dib.2015.12.056
    This data article contains two figures and one table supporting the research article entitled: "Continuous harvest of stem cells via partial detachment from thermoresponsive nanobrush surface" [1]. The table shows coating conditions of three copolymers, poly(styrene-co-acrylic acid) grafted with oligovitronectin, poly(styrene-co-N-isopropylacrylamide) and poly(styrene-co-polyethylene glycol methacrylate) to prepare thermoresponsive surface. XPS spectra show the nitrogen peak of the polystyrene surface coated with poly(styrene-co-acrylic acid) grafted with oligovitronectin. The surface coating density analyzed from sorption of poly(styrene-co-acrylic acid) grafted with oligovitronectin by UV-vis spectroscopy is also presented.
    Matched MeSH terms: Polyethylene Glycols
  3. Lin YK, Show PL, Yap YJ, Tan CP, Ng EP, Ariff AB, et al.
    J Biosci Bioeng, 2015 Dec;120(6):684-9.
    PMID: 26111602 DOI: 10.1016/j.jbiosc.2015.04.013
    Purification of cyclodextrin glycosyl transferase (CGTase) from Bacillus cereus using polyethylene glycol (PEG)-potassium phosphates aqueous two-phase flotation (ATPF) system was studied in this paper. The effects of varying PEG molecular weight, tie-line length (TLL) value, volume ratio (VR), pH value, crude concentration and gas nitrogen flotation time were investigated. The optimal condition for purification of CGTase was attained at 18.0% (w/w) PEG 8000, 7.0% (w/w) potassium phosphates, VR of 3.0, 20% (w/w) crude load at pH 7, and 80 min nitrogen flotation time at a flow rate of 5 L/min. With this optimal condition, purification factor (PFT) of 21.8 and a yield (YT) of 97.1% were attained. CGTase was successfully purified in a single downstream processing step using the ATPF.
    Matched MeSH terms: Polyethylene Glycols
  4. Lim YY, Lim KH
    J Colloid Interface Sci, 1997 Dec 01;196(1):116-9.
    PMID: 9441659
    Micellar properties of binary mixed surfactants of a surface active mixed copper(II) chelate, [Cu(C12-tmed)(acac)Cl] (where C12-tmed is N,N,N'-trimethyl-N'-dodecylethylenediamine) with three common surfactants, viz. sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB), and octaethylene glycol monododecyl ether (C12E8), were investigated by surface tensiometry, ESR, and UV-visible absorption techniques. The surface tension data were treated with Rubingh's method for mixed micelle formation and Rosen's method for mixed monolayer formation at the aqueous solution/air interface. It was found that in the mixed micelle there is strong attractive interaction between cationic copper surfactant and anonic dodecyl sulfate while there is almost ideal mixing between copper surfactant and CTAB and C12E8. From the ESR and UV-visible studies, a mixed block-type arrangement of head groups is proposed. Copyright 1997 Academic Press. Copyright 1997Academic Press
    Matched MeSH terms: Polyethylene Glycols
  5. Al-Hazeem NZ, Ahmed NM
    ACS Omega, 2020 Sep 08;5(35):22389-22394.
    PMID: 32923796 DOI: 10.1021/acsomega.0c02802
    For the first time, the fabrication of novel nanorods by the addition of polyaniline (PANI) to polyethylene oxide (PEO) and polyvinyl alcohol (PVA) polymers through electrospinning method is investigated. Field emission scanning electron microscopy observations reveal the formation of nanofibers and nanorods having diameters in the range of 26.87-139.90 nm and 64.11-122.40 nm, respectively, and lengths in the range of 542.10 nm to 1.32 μm. Photoluminescence (PL) analysis shows the presence of peaks which are characteristic of isotactic polymers (363-412, 529-691 nm), 412-529 nm for PVA/PEO and 363-691 nm for PVA/PEO/PANI. PL spectra also show peak bonding at a wavelength of 552 nm. Manufacture of nanorods by electrospinning method gives better options for controlling the diameter and length of nanorods.
    Matched MeSH terms: Polyethylene Glycols
  6. Choo YSL, Giamberini M, Antonio J, Waddell PG, Benniston AC
    Org Biomol Chem, 2020 Nov 04;18(42):8735-8745.
    PMID: 33094783 DOI: 10.1039/d0ob01533d
    The reaction of diethyl 2,5-bis(tert-butyl)phenoxy-3,6-dihydroxyterephthalate (1) with tetraethylene glycol di(p-toluenesulfonate) under high-dilution conditions afforded several isolated products. Two products were identified as macrocycles with one being the 1 + 1 crown ether derivative 3 (10% yield), and the second being the 2 + 2 crown ether compound D3 (19% yield). The X-ray structure for 3 was determined with the asymmetric unit observed to comprise half of the molecule. The small crown ether ring of 3 interacts with K+ or H+ ions in MeOH, but binding is weak and the macrocyclic cavity is too small to fully encapsulate the K+ ion. Transesterification of compounds 1, its methylated version 2 and 3 with diols such as ethylene glycol or 1,4-butandiol produced monomers (M1-M3) which were reacted with terephthaloyl chloride. Short oligomers were produced (PolyM1-PolyM3) rather than extensive polymeric materials and all displayed solid state fluorescence. The absorption and fluorescence properties of M1-M2 and their polymers can be related to subtle structural changes. The Stokes shift for M2 of 15 627 cm-1 in DCM is one of the largest observed for a simple organic chromophore in fluid solution.
    Matched MeSH terms: Polyethylene Glycols
  7. Barambu NU, Bilad MR, Bustam MA, Huda N, Jaafar J, Narkkun T, et al.
    Polymers (Basel), 2020 Oct 29;12(11).
    PMID: 33137888 DOI: 10.3390/polym12112519
    The discharge of improperly treated oil/water emulsion by industries imposes detrimental effects on human health and the environment. The membrane process is a promising technology for oil/water emulsion treatment. However, it faces the challenge of being maintaining due to membrane fouling. It occurs as a result of the strong interaction between the hydrophobic oil droplets and the hydrophobic membrane surface. This issue has attracted research interest in developing the membrane material that possesses high hydraulic and fouling resistance performances. This research explores the vapor-induced phase separation (VIPS) method for the fabrication of a hydrophilic polysulfone (PSF) membrane with the presence of polyethylene glycol (PEG) as the additive for the treatment of oil/water emulsion. Results show that the slow nonsolvent intake in VIPS greatly influences the resulting membrane structure that allows the higher retention of the additive within the membrane matrix. By extending the exposure time of the cast film under humid air, both surface chemistry and morphology of the resulting membrane can be enhanced. By extending the exposure time from 0 to 60 s, the water contact angle decreases from 70.28 ± 0.61° to 57.72 ± 0.61°, and the clean water permeability increases from 328.70 ± 8.27 to 501.89 ± 8.92 (L·m-2·h-1·bar-1). Moreover, the oil rejection also improves from 85.06 ± 1.6 to 98.48 ± 1.2%. The membrane structure was transformed from a porous top layer with a finger-like macrovoid sub-structure to a relatively thick top layer with a sponge-like macrovoid-free sub-structure. Overall results demonstrate the potential of the VIPS process to enhance both surface chemistry and morphology of the PSF membrane.
    Matched MeSH terms: Polyethylene Glycols
  8. Maniam G, Mai CW, Zulkefeli M, Fu JY
    Nanomedicine (Lond), 2021 02;16(5):373-389.
    PMID: 33543651 DOI: 10.2217/nnm-2020-0374
    Aim: To synthesize niosomes co-encapsulating gemcitabine (GEM) and tocotrienols, and physicochemically characterize and evaluate the antipancreatic effects of the nanoformulation on Panc 10.05, SW 1990, AsPC-1 and BxPC-3 cells. Materials & methods: Niosomes-entrapping GEM and tocotrienols composed of Span 60, cholesterol and D-α-tocopheryl polyethylene glycol 1000 succinate were produced by Handjani-Vila and film hydration methods. Results: The film hydration produced vesicles measuring 161.9 ± 0.5 nm, approximately 50% smaller in size than Handjani-Vila method, with maximum entrapment efficiencies of 20.07 ± 0.22% for GEM and 34.52 ± 0.10% for tocotrienols. In Panc 10.05 cells, GEM's antiproliferative effect was enhanced 2.78-fold in combination with tocotrienols. Niosomes produced a significant ninefold enhancement in cytotoxicity of the combination, supported by significantly higher cellular uptake of GEM in the cells. Conclusion: This study is a proof of concept on the synthesis of dual-drug niosomes and their efficacy on pancreatic cancer cells in vitro.
    Matched MeSH terms: Polyethylene Glycols
  9. Zahib IR, Md Tahir P, Talib M, Mohamad R, Alias AH, Lee SH
    Carbohydr Polym, 2021 Jan 15;252:117224.
    PMID: 33183648 DOI: 10.1016/j.carbpol.2020.117224
    Carboxymethyl starch (CMS) was produced from sago starch via carboxymethylation. The CMS with different degree of substitution (DS) ranges from 0.4 to 0.8 were mixed with polyethylene glycol (PEG) of different molecular weight and distilled water and the hydrogel was cured by electron beam irradiation with doses ranging from 25 to 35 kGy. The results revealed that CMS-PEG hydrogels with DS 0.4 give the optimum gel content when radiated at 30 kGy and with PEG 600. Thermogravimetric analysis (TGA) revealed that there are two phases exist in CMS with DS 0.4 in contrast to the three steps decomposition occurs in DS 0.6 and 0.8. It shows that the CMS with DS 0.4 is more thermally stable. Surface morphology revealed crosslinking among the blends when subjected into the radiation dose. The study shows both radiation and PEG addition improved most of the properties of CMS irrespective of the DS value.
    Matched MeSH terms: Polyethylene Glycols
  10. Abdul Aziz NFH, Abbasiliasi S, Ng ZJ, Abu Zarin M, Oslan SN, Tan JS, et al.
    Molecules, 2020 Nov 16;25(22).
    PMID: 33207534 DOI: 10.3390/molecules25225332
    Lactobacillus bulgaricus is a LAB strain which is capable of producing bacteriocin substances to inhibit Staphylococcus aureus. The aim of this study was to purify a bacteriocin-like inhibitory substance (BLIS) produced by L. bulgaricus FTDC 1211 using an aqueous impregnated resins system consisting of polyethylene-glycol (PEG) impregnated on Amberlite XAD4. Important parameters influencing on purification of BLIS, such as the molecular weight and concentration of PEG, the concentration and pH of sodium citrate and the concentration of sodium chloride, were optimized using a response surface methodology. Under optimum conditions of 11% (w/w) of PEG 4000 impregnated Amberlite XAD4 resins and 2% (w/w) of sodium citrate at pH 6, the maximum purification factor (3.26) and recovery yield (82.69% ± 0.06) were obtained. These results demonstrate that AIRS could be used as an alternate purification system in the primary recovery step.
    Matched MeSH terms: Polyethylene Glycols
  11. Abdul Halim SI, Chan CH, Kressler J
    Polymers (Basel), 2020 Dec 11;12(12).
    PMID: 33322501 DOI: 10.3390/polym12122963
    The studies of phase behavior, dielectric relaxation, and other properties of poly(ethylene oxide) (PEO)/poly(methyl acrylate) (PMA) blends with the addition of lithium perchlorate (LiClO4) were done for different blend compositions. Samples were prepared by a solution casting technique. The binary PEO/PMA blends exhibit a single and compositional-dependent glass transition temperature (Tg), which is also true for ternary mixtures of PEO/PMA/LiClO4 when PEO was in excess with low content of salt. These may indicate miscibility of the constituents for the molten systems and amorphous domains of the systems at room temperature from the macroscopic point of view. Subsequently, the morphology of PEO/PMA blends with or without salt are correlated to the phase behavior of the systems. Phase morphology and molecular interaction of polymer chains by salt ions of the systems may rule the dielectric or electric relaxation at room temperature, which was estimated using electrochemical impedance spectroscopy (EIS). The frequency-dependent impedance spectra are of interest for the elucidation of polarization and relaxation of the charged entities for the systems. Relaxation can be noted only when a sufficient amount of salt is added into the systems.
    Matched MeSH terms: Polyethylene Glycols
  12. Muhammed DS, Brza MA, M Nofal M, B Aziz S, A Hussen S, Abdulwahid RT
    Materials (Basel), 2020 Jul 03;13(13).
    PMID: 32635317 DOI: 10.3390/ma13132979
    The structure and optical properties of polyethylene oxide (PEO) doped with tin titanate (SnTiO3) nano-filler were studied by X-ray diffraction (XRD) and UV-Vis spectroscopy as non-destructive techniques. PEO-based composed polymer electrolytes inserted with SnTiO3 nano-particles (NPs) were synthesized through the solution cast technique. The change from crystalline phase to amorphous phase of the host polymer was established by the lowering of the intensity and broadening of the crystalline peaks. The optical constants of PEO/SnTiO3 nano-composite (NC), such as, refractive index (n), optical absorption coefficient (α), dielectric loss (εi), as well as dielectric constant (εr) were determined for pure PEO and PEO/SnTiO3 NC. From these findings, the value of n of PEO altered from 2.13 to 2.47 upon the addition of 4 wt.% SnTiO3NPs. The value of εr also increased from 4.5 to 6.3, with addition of 4 wt.% SnTiO3. The fundamental optical absorption edge of the PEO shifted toward lower photon energy upon the addition of the SnTiO3 NPs, confirming a decrement in the optical band gap energy of PEO. The band gap shifted from 4.78 eV to 4.612 eV for PEO-doped with 4 wt.% SnTiO3. The nature of electronic transitions in the pure and the composite material were studied on the basis of Tauc's model, while optical εi examination was also carried out to calculate the optical band gap.
    Matched MeSH terms: Polyethylene Glycols
  13. Hoe, Phua Choo Kwai, Khairuddin Abdul Rahim, Ahmad Nazrul Abd Wahid
    MyJurnal
    Development of biofertilizer seed treatments for okra seeds were carried out by mixing phosphate
    solubilising bacteria (AP 3) and plant growth promoter (AP 2) with adhesives. The seeds were
    coated with inoculums and four types of adhesives namely, Gum Arabic; Polyethylene Glycol
    (PEG); Sodium Alginate and Methycellulose respectively. From eight seed treatments, all seed
    treatments significantly increased seed germinations except treatment T4 (Gum Arabic and AP3).
    In general, maximum germination rates and log of viable cells were observed when treated with
    polyethylene glycol 4000 (PEG) mixed with AP2 (T7) and AP3 (T8). These results show that using
    PEG as adhesive enhanced the germination rates and log of viable cells of AP2 and AP3. Thus,
    PEG could be a good adhesive for seed treatment. In greenhouse experiment, okra seeds treatment
    with AP2 and PEG (T1) showed the highest dry weight compared to other treatments. Seeds
    treatment with AP3 and PEG (T2) showed higher contribution of N compare to seeds treatment
    (T1). There were no significant different within seed treatments and urea treatment in okra yield.
    All treatments significantly increased yields compared with control
    Matched MeSH terms: Polyethylene Glycols
  14. Escobar MA, Tehranchi R, Karim FA, Caliskan U, Chowdary P, Colberg T, et al.
    Haemophilia, 2017 Jan;23(1):67-76.
    PMID: 27480487 DOI: 10.1111/hae.13041
    INTRODUCTION: Surgery in patients with haemophilia B carries a high risk of excessive bleeding and requires adequate haemostatic control until wound healing. Nonacog beta pegol, a long-acting recombinant glycoPEGylated factor IX (FIX), was used in the perioperative management of patients undergoing major surgery.
    AIM: To evaluate the efficacy and safety of nonacog beta pegol in patients with haemophilia B who undergo major surgery.
    METHODS: This was an open-label, multicentre, non-controlled surgery trial aimed at assessing peri- and postoperative efficacy and safety of nonacog beta pegol in 13 previously treated patients with haemophilia B. All patients received a preoperative nonacog beta pegol bolus injection of 80 IU kg-1 . Postoperatively, the patients received fixed nonacog beta pegol doses of 40 IU kg-1 , repeated at the investigator's discretion. Safety assessments included monitoring of immunogenicity and adverse events.
    RESULTS: Intraoperative haemostatic effect was rated 'excellent' or 'good' in all 13 cases. Apart from the preoperative injection, none of the patients needed additional doses of nonacog beta pegol on the day of surgery. The median number of postoperative doses of nonacog beta pegol was 2.0 from days 1 to 6 and 1.5 from days 7 to 13. No unexpected intra- or postoperative complications were observed including deaths or thromboembolic events. No patients developed inhibitors.
    CONCLUSIONS: These results indicated that nonacog beta pegol was safe and effective in the perioperative setting, allowing major surgical interventions in patients with haemophilia B with minimal peri- and postoperative concentrate consumption and infrequent injections as reported with standard FIX products.
    KEYWORDS: Phase III; factor IX; haemophilia B; long-acting recombinant factor IX; nonacog beta pegol; surgery
    Matched MeSH terms: Polyethylene Glycols
  15. Yusof Hamzah, Naurah Mat Isa, Wan Md Zin Wan Yunus
    MyJurnal
    Covalently cross-linked nanogels were prepared via irradiation of inverse micelles that had been preparedfrom radiation crosslinkable polymer, water, oil and surfactant. A mixture of polymer, water, heptane andsodium dioctyl sulfosuccinate (AOT) at certain compositions forms inverse micelles with the size rangingfrom 2 to 8 nm. The hydrophilic head of the surfactant facilitates encapsulation of water soluble polymer.If the entrapped polymer is radiation crosslinkable, it is expected that upon irradiation, polymerizationshall take place in such small and confined space, leading to formation of nano-sized polymeric gel.Meanwhile, emulsion at 2 nm size was chosen for gamma irradiation process. The formation of thenano-sized discreet gel using irradiation of inverse micelles technique was proven at a dose as low as 5kGy to obtain nanogel sized ~ 95 nm.
    Matched MeSH terms: Polyethylene Glycols
  16. Norshazila, S., Othman, R., Jaswir, I., Yumi Zuhanis, H.H.
    MyJurnal
    In nature, environmental factors highly influence the carotenoid composition in pumpkin plants and these factors were difficult to control; thus, carotenoid content is varied quantitatively and qualitatively. However, certain parameters can be controlled and this can be conducted in the laboratory through biogenesis manipulation. This approach uses environmental stress as a tool to alter the carotenoid pathway in the plants. The main objective of this study was to observe the inhibiting and enhancing effect of abiotic stress on individual carotenoid accumulation in pumpkin plants under light and dark conditions. The abiotic stresses used were plant elicitors which consisted of Ultra Violet light exposure, Polyethylene Glycol 4000, Salicylic Acid, and half strength nutrients using Murashige and Skoog Salt. After two weeks of treatments, the pumpkin leaves and stems were harvested, freeze dried and extracted to determine the carotenoids compound using High-Performance Liquid Chromatography (HPLC). Results showed that there was a significant difference (p
    Matched MeSH terms: Polyethylene Glycols
  17. Behjat, T., Russly, A.R., Luqman, C.A., Yus, A.Y., Nor Azowa, I.
    MyJurnal
    Several blends of cellulose derived from bast part of kenaf (Hibiscus cannabinus L.) plant, with different thermoplastics, low density polyethylene (LDPE) and high density polyethylene (HDPE), were prepared by a melt blending machine. Polyethylene glycol (PEG) was used as plasticizer. Biodegradability of these blends was measured using soil burial test in order to study the rates of biodegradation of these polymer blends. It was found that the cellulose/LDPE and cellulose/HDPE blends were biodegradable in a considerable rate. The bio-composites with high content of cellulose had higher degradation rate. In addition, biodegradability of the bio-composites made up using PEG was superior to those of the bio-composites fabricated without PEG, due to the improved wetting of the plasticizer in the matrix polymer. The results were also supported by the scanning electron microscopy (SEM).
    Matched MeSH terms: Polyethylene Glycols
  18. Tan, Hui San, Abdoreza Soleimani Farjam, Goh, Yong Meng, Idrus Zulkifli, Evi Croes, Sarathi Karmakar Partha, et al.
    MyJurnal
    This research was done to evaluate the effect of a commercial exogenous emulsifier
    (polyethylene glycol ricinoleate (PEGR)) with high hydrophilic-to-lipophilic balance (HLB)
    supplementation to broiler chicken diets on growth performance, digestibility of fat and
    apparent metabolisable energy (AME) content in week 1, 3 and 5. A total of 360 one-day-old
    male Cobb broiler chicks were assigned in groups of 30 to 12 battery cages. The chicks were
    randomly assigned to two dietary treatments, with 6 replicate cages per treatment. The diets
    were either standard broiler starter and finisher, with rice bran oil (RBO) as supplemented fat
    source or similar diets + 0.05% emulsifier (RBOV). Feed intakes of RBOV groups significantly
    increased compared to those of RBO groups from week 2 till 4 while body weights of RBOV
    diets significantly increased in week 4 and 5. Both RBOV and RBO groups had similar FCR
    except for week 5. Addition of this strongly hydrophilic emulsifier showed no significant
    difference in fat digestibility of both RC and RV groups but higher AME was noted for the
    treatment than for the control groups at week 5. Therefore, supplementing the exogenous
    emulsifier into a broiler diet enriched with rice bran oil improved body weight and AME
    content at week 5 with minimal effect on fat digestibility.
    Matched MeSH terms: Polyethylene Glycols
  19. Hashim H, Maruyama H, Akita Y, Arai F
    Sensors (Basel), 2019 Nov 29;19(23).
    PMID: 31795304 DOI: 10.3390/s19235247
    This work describes a hydrogel fluorescence microsensor for prolonged stable temperature measurements. Temperature measurement using microsensors has the potential to provide information about cells, tissues, and the culture environment, with optical measurement using a fluorescent dye being a promising microsensing approach. However, it is challenging to achieve stable measurements over prolonged periods with conventional measurement methods based on the fluorescence intensity of fluorescent dye because the excited fluorescent dye molecules are bleached by the exposure to light. The decrease in fluorescence intensity induced by photobleaching causes measurement errors. In this work, a photobleaching compensation method based on the diffusion of fluorescent dye inside a hydrogel microsensor is proposed. The factors that influence compensation in the hydrogel microsensor system are the interval time between measurements, material, concentration of photo initiator, and the composition of the fluorescence microsensor. These factors were evaluated by comparing a polystyrene fluorescence microsensor and a hydrogel fluorescence microsensor, both with diameters of 20 µm. The hydrogel fluorescence microsensor made from 9% poly (ethylene glycol) diacrylate (PEGDA) 575 and 2% photo initiator showed excellent fluorescence intensity stability after exposure (standard deviation of difference from initial fluorescence after 100 measurement repetitions: within 1%). The effect of microsensor size on the stability of the fluorescence intensity was also evaluated. The hydrogel fluorescence microsensors, with sizes greater than the measurement area determined by the axial resolution of the confocal microscope, showed a small decrease in fluorescence intensity, within 3%, after 900 measurement repetitions. The temperature of deionized water in a microchamber was measured for 5400 s using both a thermopile and the hydrogel fluorescence microsensor. The results showed that the maximum error and standard deviation of error between these two sensors were 0.5 °C and 0.3 °C, respectively, confirming the effectiveness of the proposed method.
    Matched MeSH terms: Polyethylene Glycols
  20. Akbari A, Mohammadian E, Alavi Fazel SA, Shanbedi M, Bahreini M, Heidari M, et al.
    ACS Omega, 2019 Nov 19;4(21):19183-19192.
    PMID: 31763542 DOI: 10.1021/acsomega.9b02474
    An increase of nucleate pool boiling with the use of different fluid properties has received much attention. In particular, the presence of nanostructures in fluids to enhance boiling was given special consideration. This study compares the effects of graphene nanoplatelet (GNP), functionalized GNP with polyethylene glycol (PEG), and multiwalled carbon nanotube (CNT) nanofluids on the pool boiling heat transfer coefficient and the critical heat flux (CHF). Our findings showed that at the same concentration, CHF for functionalized GNP with PEG (GNP-PEG)/deionized water (DW) nanofluids was higher in comparison with GNP- and CNT-based nanofluids. The CHF of the GNP/DW nanofluids was also higher than that of CNT/DW nanofluids. The CHF of GNP-PEG was 72% greater than that of DW at the concentration of 0.1 wt %. There is good agreement between measured critical heat fluxes and the Kandlikar correlation. In addition, the current results proved that the GNP-PEG/DW nanofluids are highly stable over 3 months at a concentration of 0.1 wt %.
    Matched MeSH terms: Polyethylene Glycols
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links