Displaying publications 41 - 60 of 85 in total

Abstract:
Sort:
  1. Revati R, Abdul Majid MS, Ridzuan MJM, Normahira M, Mohd Nasir NF, Rahman Y MN, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 Jun 01;75:752-759.
    PMID: 28415525 DOI: 10.1016/j.msec.2017.02.127
    The mechanical, thermal, and morphological properties of a 3D porous Pennisetum purpureum (PP)/polylactic acid (PLA) based scaffold were investigated. In this study, a scaffold containing P. purpureum and PLA was produced using the solvent casting and particulate leaching method. P. purpureum fibre, also locally known as Napier grass, is composed of 46% cellulose, 34% hemicellulose, and 20% lignin. PLA composites with various P. purpureum contents (10%, 20%, and 30%) were prepared and subsequently characterised. The morphologies, structures and thermal behaviours of the prepared composite scaffolds were characterised using field-emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The morphology was studied using FESEM; the scaffold possessed 70-200μm-sized pores with a high level of interconnectivity. The moisture content and mechanical properties of the developed porous scaffolds were further characterised. The P. purpureum/PLA scaffold had a greater porosity factor (99%) and compression modulus (5.25MPa) than those of the pure PLA scaffold (1.73MPa). From the results, it can be concluded that the properties of the highly porous P. purpureum/PLA scaffold developed in this study can be controlled and optimised. This can be used to facilitate the construction of implantable tissue-engineered cartilage.
    Matched MeSH terms: Polyesters/chemistry*
  2. Pakalapati H, Arumugasamy SK, Jewaratnam J, Wong YJ, Khalid M
    Biopolymers, 2018 Dec;109(12):e23240.
    PMID: 30489632 DOI: 10.1002/bip.23240
    A statistical approach with D-optimal design was used to optimize the process parameters for polycaprolactone (PCL) synthesis. The variables selected were temperature (50°C-110°C), time (1-7 h), mixing speed (50-500 rpm) and monomer/solvent ratio (1:1-1:6). Molecular weight was chosen as response and was determined using matrix-assisted laser desorption/ionization time of flight (MALDI TOF). Using the D-optimal method in design of experiments, the interactions between parameters and responses were analysed and validated. The results show a good agreement with a minimum error between the actual and predicted values.
    Matched MeSH terms: Polyesters/chemistry
  3. Kian LK, Jawaid M, Nasef MM, Fouad H, Karim Z
    Int J Biol Macromol, 2021 Dec 01;192:654-664.
    PMID: 34655581 DOI: 10.1016/j.ijbiomac.2021.10.042
    In this study, poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) dual-layer membranes filled with 0-3 wt% cellulose nanowhisker (CNWs) were fabricated with aim to remove metal ions from wastewater. An integrated method was employed in the membrane fabrication process by combining water vapor-induced and crystallization-induced phase inversions. The membrane thickness was measured in between 11 and 13 μm, which did not pose significant flux deviation during filtration process. The 3% CNW filled membrane showed prominent and well-laminated two layers structure. Meanwhile, the increase in CNWs from 0 to 3% loadings could improve the membrane porosity (43-74%) but reducing pore size (2.45-0.54 μm). The heat resistance of neat membrane enhanced by 1% CNW but decreased with loadings of 2-3% CNWs due to flaming behavior of sulphated nanocellulose. Membrane with 3% CNW displayed the tensile strength (23.5 MPa), elongation at break (7.1%), and Young's modulus (0.75 GPa) as compared to other samples. For wastewater filtration performance, the continuous operation test showed that 3% CNW filled membrane exhibited the highest removal efficiency for both cobalt and nickel metal ions reaching to 83% and 84%, respectively. We concluded that CNWs filled dual-layer membranes have potential for future development in the removal of heavy metal ions from wastewater streams.
    Matched MeSH terms: Polyesters/chemistry*
  4. Anita Lett J, Sagadevan S, Léonard E, Fatimah I, Motalib Hossain MA, Mohammad F, et al.
    Artif Organs, 2021 Dec;45(12):1501-1512.
    PMID: 34309044 DOI: 10.1111/aor.14045
    The primary role of bone tissue engineering is to reconcile the damaged bones and facilitate the speedy recovery of the injured bones. However, some of the investigated metallic implants suffer from stress-shielding, palpability, biocompatibility, etc. Consequently, the biodegradable scaffolds fabricated from polymers have gathered much attention from researchers and thus helped the tissue engineering sector by providing many alternative materials whose functionality is similar to that of natural bones. Herein, we present the fabrication and testing of a novel composite, magnesium (Mg)-doped hydroxyapatite (HAp) glazed onto polylactic acid (PLA) scaffolds where polyvinyl alcohol (PVA) used as a binder. For the composite formation, Creality Ender-3 pro High Precision 3D Printer with Shape tool 3D Technology on an FSD machine operated by Catia design software was employed. The composite has been characterized for the crystallinity (XRD), surface functionality (FTIR), morphology (FESEM), biocompatibility (hemolytic and protein absorption), and mechanical properties (stress-strain and maximum compressive strength). The powder XRD analysis confirmed the semicrystalline nature and intact structure of HAp even after doping with Mg, while FTIR studies for the successful formation of Mg-HAp/PVA@PLA composite. The FESEM provided analysis indicated for the 3D porous architecture and well-defined morphology to efficiently transport the nutrients, and the biocompatibility studies are supporting that the composite for blood compatible with the surface being suitable enough for the protein absorption. Finally, the composite's antibacterial activity (against Staphylococcus aureus and Escherichia coli) and the test of mechanical properties supported for the enhanced inhibition of active growth of microorganisms and maximum compressive strength, respectively. Based on the research outcomes of biocompatibility, antibacterial activity, and mechanical resistance, the fabricated Mg-HAp/PVA@PLA composite suits well as a promising biomaterial platform for orthopedic applications by functioning towards the open reduction internal fixation of bone fractures and internal repairs.
    Matched MeSH terms: Polyesters/chemistry*
  5. Baba Ismail YM, Ferreira AM, Bretcanu O, Dalgarno K, El Haj AJ
    Colloids Surf B Biointerfaces, 2017 Nov 01;159:445-453.
    PMID: 28837894 DOI: 10.1016/j.colsurfb.2017.07.086
    This paper presents a new approach in assembling bone extracellular matrix components onto PLA films, and investigates the most favourable environment which can be created using the technique for cell-material interactions. Poly (lactic acid) (PLA) films were chemically modified by covalently binding the poly(ethylene imine) (PEI) as to prepare the substrate for immobilization of polyelectrolyte multilayers (PEMs) coating. Negatively charged polyelectrolyte consists of well-dispersed silicon-carbonated hydroxyapatite (SiCHA) nanopowders in hyaluronic acid (Hya) was deposited onto the modified PLA films followed by SiCHA in collagen type I as the positively charged polyelectrolyte. The outermost layer was finally cross-linked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrocholoride and N-hydroxysulfosuccinimide sodium salt (EDC/NHS) solutions. The physicochemical features of the coated PLA films were monitored via X-ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscope (AFM). The amounts of calcium and collagen deposited on the surface were qualitatively and quantitatively determined. The surface characterizations suggested that 5-BL has the optimum surface roughness and highest amounts of calcium and collagen depositions among tested films. In vitro human mesenchymal stem cells (hMSCs) cultured on the coated PLA films confirmed that the coating materials greatly improved cell attachment and survival compared to unmodified PLA films. The cell viability, cell proliferation and Alkaline Phosphatase (ALP) expression on 5-BL were found to be the most favourable of the tested films. Hence, this newly developed coating materials assembly could contribute to the improvement of the bioactivity of polymeric materials and structures aimed to bone tissue engineering applications.
    Matched MeSH terms: Polyesters/chemistry*
  6. Yew CT, Azari P, Choi JR, Li F, Pingguan-Murphy B
    Anal Chim Acta, 2018 Jun 07;1009:81-88.
    PMID: 29422135 DOI: 10.1016/j.aca.2018.01.016
    Point-of-care biosensors are important tools developed to aid medical diagnosis and testing, food safety and environmental monitoring. Paper-based biosensors, especially nucleic acid-based lateral flow assays (LFA), are affordable, simple to produce and easy to use in remote settings. However, the sensitivity of such assays to infectious diseases has always been a restrictive challenge. Here, we have successfully electrospun polycaprolactone (PCL) on nitrocellulose (NC) membrane to form a hydrophobic coating to reduce the flow rate and increase the interaction rate between the targets and gold nanoparticles-detecting probes conjugates, resulting in the binding of more complexes to the capture probes. With this approach, the sensitivity of the PCL electrospin-coated test strip has been increased by approximately ten-fold as compared to the unmodified test strip. As a proof of concept, this approach holds great potential for sensitive detection of targets at point-of-care testing.
    Matched MeSH terms: Polyesters/chemistry*
  7. Samsudin H, Auras R, Burgess G, Dolan K, Soto-Valdez H
    Food Res Int, 2018 03;105:920-929.
    PMID: 29433289 DOI: 10.1016/j.foodres.2017.11.065
    A two-step solution based on the boundary conditions of Crank's equations for mass transfer in a film was developed. Three driving factors, the diffusion (D), partition (Kp,f) and convective mass transfer coefficients (h), govern the sorption and/or desorption kinetics of migrants from polymer films. These three parameters were simultaneously estimated. They provide in-depth insight into the physics of a migration process. The first step was used to find the combination of D, Kp,f and h that minimized the sums of squared errors (SSE) between the predicted and actual results. In step 2, an ordinary least square (OLS) estimation was performed by using the proposed analytical solution containing D, Kp,f and h. Three selected migration studies of PLA/antioxidant-based films were used to demonstrate the use of this two-step solution. Additional parameter estimation approaches such as sequential and bootstrap were also performed to acquire a better knowledge about the kinetics of migration. The proposed model successfully provided the initial guesses for D, Kp,f and h. The h value was determined without performing a specific experiment for it. By determining h together with D, under or overestimation issues pertaining to a migration process can be avoided since these two parameters are correlated.
    Matched MeSH terms: Polyesters/chemistry*
  8. Muhammad KB, Abas WA, Kim KH, Pingguan-Murphy B, Zain NM, Akram H
    Clinics (Sao Paulo), 2012;67(6):629-38.
    PMID: 22760903
    OBJECTIVE: Dark poly(caprolactone) trifumarate is a successful candidate for use as a bone tissue engineering scaffold. Recently, a white polymeric scaffold was developed that shows a shorter synthesis time and is more convenient for tissue-staining work. This is an in vitro comparative study of both the white and dark scaffolds.

    METHODS: Both white and dark poly(caprolactone) trifumarate macromers were characterized via Fourier transform infrared spectroscopy before being chemically cross-linked and molded into disc-shaped scaffolds. Biodegradability was assessed by percentage weight loss on days 7, 14, 28, 42 and 56 (n = 5) after immersion in 10% serum-supplemented medium or distilled water. Static cell seeding was employed in which isolated and characterized rat bone marrow stromal cells were seeded directly onto the scaffold surface. Seeded scaffolds were subjected to a series of biochemical assays and scanning electron microscopy at specified time intervals for up to 28 days of incubation.

    RESULTS: The degradation of the white scaffold was significantly lower compared with the dark scaffold but was within the acceptable time range for bone-healing processes. The deoxyribonucleic acid and collagen contents increased up to day 28 with no significant difference between the two scaffolds, but the glycosaminoglycan content was slightly higher in the white scaffold throughout 14 days of incubation. Scanning electron microscopy at day 1 [corrected] revealed cellular growth and attachment.

    CONCLUSIONS: There was no cell growth advantage between the two forms, but the white scaffold had a slower biodegradability rate, suggesting that the newly synthesized poly(caprolactone) trifumarate is more suitable for use as a bone tissue engineering scaffold.

    Matched MeSH terms: Polyesters/chemistry*
  9. Chimplee S, Mitsuwan W, Zulkifli M, Eawsakul K, Ongtanasup T, Sangkanu S, et al.
    PeerJ, 2024;12:e18452.
    PMID: 39559326 DOI: 10.7717/peerj.18452
    BACKGROUND: Acanthamoeba spp. is a waterborne, opportunistic protozoan that can cause amebic keratitis and granulomatous amebic encephalitis. Knema retusa is a native tree in Malaysia, and its extracts possess a broad range of biological activities. Niosomes are non-ionic surfactant-based vesicle formations and suggest a future targeted drug delivery system. Copolymer micelle (poly(ethylene glycol)-block-poly(ɛ-caprolactone); PEG-b-PCL) is also a key constituent of niosome and supports high stability and drug efficacy. To establish Knema retusa extract (KRe) loading in diverse nanocarriers via niosome, PEG-b-PCL micelle, and their combination and to study the effect of all types of nanoparticles (NPs) on Acanthamoeba viability, adherent ability, elimination of adherence, and cytotoxicity.

    METHODS: In this study, we characterized niosomes, PEG-b-PCL, and their combination loaded with KRe and tested the effect of these NPs on Acanthamoeba triangularis stages. KRe-loaded PEG-b-PCL, KRe-loaded niosome, and KRe-loaded PEG-b-PCL plus niosome were synthesized and characterized regarding particle size and charge, yield, encapsulation efficiency (EE), and drug loading content (DLC). The effect of these KRe-loaded NPs on trophozoite and cystic forms of A. triangularis was assessed through assays of minimal inhibitory concentration (MIC), using trypan blue exclusion to determine the viability. The effect of KRe-loaded NPs was also determined on A. triangularis trophozoite for 24-72 h. Additionally, the anti-adhesion activity of the KRe-loaded niosome on trophozoites was also performed on a 96-well plate. Cytotoxicity activity of KRe-loaded NPs was assessed on VERO and HaCaT cells using MTT assay.

    RESULTS: KRe-loaded niosome demonstrated a higher yielded (87.93 ± 6.03%) at 286 nm UV-Vis detection and exhibited a larger size (199.3 ± 29.98 nm) and DLC (19.63 ± 1.84%) compared to KRe-loaded PEG-b-PCL (45.2 ± 10.07 nm and 2.15 ± 0.25%). The EE (%) of KRe-loaded niosome was 63.67 ± 4.04, which was significantly lower than that of the combination of PEG-b-PCL and niosome (79.67 ± 2.08). However, the particle charge of these NPs was similar (-28.2 ± 3.68 mV and -28.5 ± 4.88, respectively). Additionally, KRe-loaded niosome and KRe-loaded PEG-b-PCL plus niosome exhibited a lower MIC at 24 h (0.25 mg/mL), inhibiting 90-100% of Acanthamoeba trophozoites which lasted 72 h. KRe-loaded niosome affected adherence by around 40-60% at 0.125-0.25 mg/mL and removed Acanthamoeba adhesion on the surface by about 90% at 0.5 mg/mL. Cell viability of VERO and HaCaT cells treated with 0.125 mg/mL of KRe-loaded niosome and KRe-loaded PEG-b-PCL plus niosome exceeded 80%.

    CONCLUSION: Indeed, niosome and niosome plus PEG-b-PCL were suitable nanocarrier-loaded KRe, and they had a greater nanoparticle property to test with high activities against A. triangularis on the reduction of adherence ability and demonstration of its low toxicity to VERO and HaCaT cells.

    Matched MeSH terms: Polyesters/chemistry
  10. Khandanlou R, Ahmad MB, Shameli K, Saki E, Kalantari K
    Int J Mol Sci, 2014;15(10):18466-83.
    PMID: 25318051 DOI: 10.3390/ijms151018466
    Modified rice straw/Fe3O4/polycaprolactone nanocomposites (ORS/Fe3O4/ PCL-NCs) have been prepared for the first time using a solution casting method. The RS/Fe3O4-NCs were modified with octadecylamine (ODA) as an organic modifier. The prepared NCs were characterized by using X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR). The XRD results showed that as the intensity of the peaks decreased with the increase of ORS/Fe3O4-NCs content in comparison with PCL peaks, the Fe3O4-NPs peaks increased from 1.0 to 60.0 wt. %. The TEM and SEM results showed a good dispersion of ORS/Fe3O4-NCs in the PCL matrix and the spherical shape of the NPs. The TGA analysis indicated thermal stability of ORS/Fe3O4-NCs increased after incorporation with PCL but the thermal stability of ORS/Fe3O4/PCL-NCs decreased with the increase of ORS/Fe3O4-NCs content. Tensile strength was improved with the addition of 5.0 wt. % of ORS/Fe3O4-NCs. The antibacterial activities of the ORS/Fe3O4/PCL-NC films were examined against Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) by diffusion method using nutrient agar. The results indicated that ORS/Fe3O4/PCL-NC films possessed a strong antibacterial activity with the increase in the percentage of ORS/Fe3O4-NCs in the PCL.
    Matched MeSH terms: Polyesters/chemistry*
  11. Rennukka M, Sipaut CS, Amirul AA
    Biotechnol Prog, 2014 Nov-Dec;30(6):1469-79.
    PMID: 25181613 DOI: 10.1002/btpr.1986
    This work aims to shed light in the fabrication of poly(3-hydroxybutyrate-co-44%-4-hydroxybutyrate)[P(3HB-co-44%4HB)]/chitosan-based silver nanocomposite material using different contents of silver nanoparticle (SNP); 1-9 wt%. Two approaches were applied in the fabrication; namely solvent casting and chemical crosslinking via glutaraldehyde (GA). A detailed characterization was conducted in order to yield information regarding the nanocomposite material. X-ray diffraction analysis exhibited the nature of the three components that exist in the nanocomposite films: P(3HB-co-4HB), chitosan, and SNP. In term of mechanical properties, tensile strength, and elongation at break were significantly improved up to 125% and 22%, respectively with the impregnation of the SNP. The melting temperature of the nanocomposite materials was increased whereas their thermal stability was slightly changed. Scanning electron microscopy images revealed that incorporation of 9 wt% of SNP caused agglomeration but the surface roughness of the material was significantly improved with the loading. Staphylococcus aureus and Escherichia coli were completely inhibited by the nanocomposite films with 7 and 9 wt% of SNP, respectively. On the other hand, degradation of the nanocomposite materials outweighed the degradation of the pure copolymer. These bioactive and biodegradable materials stand a good chance to serve the vast need of biomedical applications namely management and care of wound as wound dressing.
    Matched MeSH terms: Polyesters/chemistry
  12. Hoque ME, San WY, Wei F, Li S, Huang MH, Vert M, et al.
    Tissue Eng Part A, 2009 Oct;15(10):3013-24.
    PMID: 19331580 DOI: 10.1089/ten.TEA.2008.0355
    Synthetic polymers have attracted much attention in tissue engineering due to their ability to modulate biomechanical properties. This study investigated the feasibility of processing poly(epsilon-caprolactone) (PCL) homopolymer, PCL-poly(ethylene glycol) (PEG) diblock, and PCL-PEG-PCL triblock copolymers into three-dimensional porous scaffolds. Properties of the various polymers were investigated by dynamic thermal analysis. The scaffolds were manufactured using the desktop robot-based rapid prototyping technique. Gross morphology and internal three-dimensional structure of scaffolds were identified by scanning electron microscopy and micro-computed tomography, which showed excellent fusion at the filament junctions, high uniformity, and complete interconnectivity of pore networks. The influences of process parameters on scaffolds' morphological and mechanical characteristics were studied. Data confirmed that the process parameters directly influenced the pore size, porosity, and, consequently, the mechanical properties of the scaffolds. The in vitro cell culture study was performed to investigate the influence of polymer nature and scaffold architecture on the adhesion of the cells onto the scaffolds using rabbit smooth muscle cells. Light, scanning electron, and confocal laser microscopy showed cell adhesion, proliferation, and extracellular matrix formation on the surface as well as inside the structure of both scaffold groups. The completely interconnected and highly regular honeycomb-like pore morphology supported bridging of the pores via cell-to-cell contact as well as production of extracellular matrix at later time points. The results indicated that the incorporation of hydrophilic PEG into hydrophobic PCL enhanced the overall hydrophilicity and cell culture performance of PCL-PEG copolymer. However, the scaffold architecture did not significantly influence the cell culture performance in this study.
    Matched MeSH terms: Polyesters/chemistry*
  13. Siew EL, Rajab NF, Osman AB, Sudesh K, Inayat-Hussain SH
    J Biomed Mater Res A, 2009 Dec;91(3):786-94.
    PMID: 19051306 DOI: 10.1002/jbm.a.32290
    Polyhydroxyalkanoates (PHA) are naturally occurring biopolyesters that have great potential in the medical field. However, the leachables resulting from sterilization process of the biomaterials may exert toxic effect including genetic damage. Here, we demonstrate that although gamma-irradiation of poly(3-hydroxybutyrate-co-50 mol % 4-hydroxybutyrate) [P(3HB-co-4HB)] did not cause any change in the morphology by scanning electron microscopy, there was a significant degradation of this copolymer where the molecular weight was reduced by 37% after sterilization indicating the generation of leachables. Therefore, further investigation on the ability of the extract of this poststerilized copolymer to induce mutagenic effect was performed using Ames test (S. typhimurium strains TA1535 and TA1537) and umu test (S. typhimurium strain TA1535/pSK1002). Additionally, the capability of the extract to induce clastogenic effect was determined using Chinese hamster lung V79 fibroblast cells. Our results showed that with and without the presence of S9 metabolic activation, no mutagenic effects were observed in both Ames and umu tests when treated with P(3HB-co-4HB) extract. Similarly, treatment of P(3HB-co-4HB) extract in V79 fibroblast cells showed no significant production of micronuclei when compared with the positive control (Mitomycin C). Together, these results indicate that leachables of poststerilized P(3HB-co-4HB) cause no mutagenic and clastogenic effects.
    Matched MeSH terms: Polyesters/chemistry*
  14. Jau MH, Yew SP, Toh PS, Chong AS, Chu WL, Phang SM, et al.
    Int J Biol Macromol, 2005 Aug;36(3):144-51.
    PMID: 16005060
    Three strains of Spirulina platensis isolated from different locations showed capability of synthesizing poly(3-hydroxybutyrate) [P(3HB)] under nitrogen-starved conditions with a maximum accumulation of up to 10 wt.% of the cell dry weight (CDW) under mixotrophic culture conditions. Intracellular degradation (mobilization) of P(3HB) granules by S. platensis was initiated by the restoration of nitrogen source. This mobilization process was affected by both illumination and culture pH. The mobilization of P(3HB) was better under illumination (80% degradation) than in dark conditions (40% degradation) over a period of 4 days. Alkaline conditions (pH 10-11) were optimal for both biosynthesis and mobilization of P(3HB) at which 90% of the accumulated P(3HB) was mobilized. Transmission electron microscopy (TEM) revealed that the mobilization of P(3HB) involved changes in granule quantity and morphology. The P(3HB) granules became irregular in shape and the boundary region was less defined. In contrast to bacteria, in S. platensis the intracellular mobilization of P(3HB) seems to be faster than the biosynthesis process. This is because in cyanobacteria chlorosis delays the P(3HB) accumulation process.
    Matched MeSH terms: Polyesters/chemistry*
  15. Rozila I, Azari P, Munirah S, Wan Safwani WK, Gan SN, Nur Azurah AG, et al.
    J Biomed Mater Res A, 2016 Feb;104(2):377-87.
    PMID: 26414782 DOI: 10.1002/jbm.a.35573
    The osteogenic potential of human adipose-derived stem cells (HADSCs) co-cultured with human osteoblasts (HOBs) using selected HADSCs/HOBs ratios of 1:1, 2:1, and 1:2, respectively, is evaluated. The HADSCs/HOBs were seeded on electrospun three-dimensional poly[(R)-3-hydroxybutyric acid] (PHB) blended with bovine-derived hydroxyapatite (BHA). Monocultures of HADSCs and HOBs were used as control groups. The effects of PHB-BHA scaffold on cell proliferation and cell morphology were assessed by AlamarBlue assay and field emission scanning electron microscopy. Cell differentiation, cell mineralization, and osteogenic-related gene expression of co-culture HADSCs/HOBs were examined by alkaline phosphatase (ALP) assay, alizarin Red S assay, and quantitative real time PCR, respectively. The results showed that co-culture of HADSCs/HOBs, 1:1 grown into PHB-BHA promoted better cell adhesion, displayed a significant higher cell proliferation, higher production of ALP, extracellular mineralization and osteogenic-related gene expression of run-related transcription factor, bone sialoprotein, osteopontin, and osteocalcin compared to other co-culture groups. This result also suggests that the use of electrospun PHB-BHA in a co-culture HADSCs/HOBs system may serve as promising approach to facilitate osteogenic differentiation activity of HADSCs through direct cell-to-cell contact with HOBs.
    Matched MeSH terms: Polyesters/chemistry*
  16. Vigneswari S, Murugaiyah V, Kaur G, Abdul Khalil HPS, Amirul AA
    Mater Sci Eng C Mater Biol Appl, 2016 Sep 01;66:147-155.
    PMID: 27207048 DOI: 10.1016/j.msec.2016.03.102
    The main focus of this study is the incorporation of collagen peptides to fabricate P(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] nano-fiber construct to further enhance surface wettability and support cell growth while harbouring desired properties for biodegradable wound dressing. Simultaneous electrospinning of nanofiber P(3HB-co-4HB)/collagen peptides construct was carried out using dual syringe system. The wettability of the constructs increased with the increase in 4HB molar fraction from 20mol% 4HB [53.2°], P(3HB-co-35mol%4HB)[48.9°], P(3HB-co-50mol%4HB)[44.5°] and P(3HB-co-82mol%4HB) [37.7°]. In vitro study carried out using mouse fibroblast cells (L929) grown on nanofiber P(3HB-co-4HB)/collagen peptides construct showed an increase in cell proliferation. In vivo study using animal model (Sprague Dawley rats) showed that nanofibrous P(3HB-co-4HB)/collagen peptides construct had a significant effect on wound contractions with the highest percentage of wound closure of 79%. Hence, P(3HB-co-4HB)/collagen peptides construct suitable for wound dressing have been developed using nano-fabrication technique.
    Matched MeSH terms: Polyesters/chemistry*
  17. Chang HC, Sun T, Sultana N, Lim MM, Khan TH, Ismail AF
    Mater Sci Eng C Mater Biol Appl, 2016 Apr 1;61:396-410.
    PMID: 26838866 DOI: 10.1016/j.msec.2015.12.074
    In the current study, electrospinning technique was used to fabricate composite membranes by blending of a synthetic polymer, polylactic acid (PLA) and a natural polymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PHBV. Conductive membranes were prepared by dipping PLA/PHBV electrospun membranes into poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (
    Matched MeSH terms: Polyesters/chemistry*
  18. Gumel AM, Razaif-Mazinah MR, Anis SN, Annuar MS
    Biomed Mater, 2015 Aug;10(4):045001.
    PMID: 26154416 DOI: 10.1088/1748-6041/10/4/045001
    Wound management and healing in several physiological or pathological conditions, particularly when comorbidities are involved, usually proves to be difficult. This presents complications leading to socio-economic and public health burdens. The accelerative wound healing potential of biocompatible poly(3-hydroxyalkanoates)-co-(6-hydroxyhexanoate) (PHA-PCL) composite hydrogel is reported herein. The biosynthesized PHA-PCL macromer was cross-linked with PEGMA to give a hydrogel. Twenty-four rats weighing 200-250 g each were randomly assigned to four groups of six rats. Rats in group I (negative control) were dressed with sterilized gum acacia paste in 10% normal saline while PEGMA-alone hydrogel (PH) was used to dress group II (secondary control) rats. Group III rats were dressed with PHAs-PCL cross-linked PEGMA hydrogel (PPH). For the positive control (group IV), the rats were dressed with Intrasite(®) gel. Biochemical, histomorphometric and immunohistomorphometric analyses revealed a significant difference in area closure and re-epithelialization on days 7 and 14 in PPH or Intrasite(®) gel groups compared to gum acacia or PEGMA-alone groups. Furthermore, wounds dressed with PPH or Intrasite(®) gel showed evident collagen deposition, enhanced fibrosis and extensively organized angiogenesis on day 14 compared to the negative control group. While improvement in wound healing of the PH dressed group could be observed, there was no significant difference between the negative control group and the PH dressed group in any of the tests. The findings suggested that topical application of PPH accelerated the rats' wound healing process by improving angiogenesis attributed to the increased microvessel density (MVD) and expressions of VEGF-A in tissue samples. Thus, PPH has been demonstrated to be effective in the treatment of cutaneous wounds in rats, and could be a potential novel agent in the management and acceleration of wound healing in humans and animals.
    Matched MeSH terms: Polyesters/chemistry*
  19. Ho YH, Gan SN, Tan IK
    Appl Biochem Biotechnol, 2002 10 25;102-103(1-6):337-47.
    PMID: 12396135
    The medium-chain-length polyhydroxyalkanoate (PHA(MCL)) produced by Pseudomonas putida PGA1 using saponified palm kernel oil as the carbon source could degrade readily in water taken from Kayu Ara River in Selangor, Malaysia. A weight loss of 71.3% of the PHA film occurred in 86 d. The pH of the river water medium fell from 7.5 (at d 0) to 4.7 (at d 86), and there was a net release of CO2. In sterilized river water, the PHA film also lost weight and the pH of the water fell, but to lesser extents. The C8 monomer of the PHA was completely removed after 6 d of immersion in the river water, while the proportions of the other monomers (C10, C12, and C14) were reversed from that of the undegraded PHA. By contrast, the monomer composition of the PHA immersed in sterilized river water did not change significantly from that of the undegraded PHA. Scanning electron microscopy showed physical signs of degradation on the PHA film immersed in the river water, but the film immersed in sterilized river water was relatively unblemished. The results thus indicate that the PHA(MCL) was degraded in tropical river water by biologic as well as nonbiologic means. A significant finding is that shorter-chain monomers were selectively removed throughout the entire PHA molecule, and this suggests enzymatic action.
    Matched MeSH terms: Polyesters/chemistry
  20. Lau NS, Tsuge T, Sudesh K
    Appl Microbiol Biotechnol, 2011 Mar;89(5):1599-609.
    PMID: 21279348 DOI: 10.1007/s00253-011-3097-6
    Burkholderia sp. synthase has been shown to polymerize 3-hydroxybutyrate (3HB), 3-hydroxyvalerate, and 3-hydroxy-4-pentenoic acid monomers. This study was carried out to evaluate the ability of Burkholderia sp. USM (JCM 15050) and its transformant harboring the polyhydroxyalkanoate (PHA) synthase gene of Aeromonas caviae to incorporate the newly reported 3-hydroxy-4-methylvalerate (3H4MV) monomer. Various culture parameters such as concentrations of nutrient rich medium, fructose and 4-methylvaleric acid as well as harvesting time were manipulated to produce P(3HB-co-3H4MV) with different 3H4MV compositions. The structural properties of PHA containing 3H4MV monomer were investigated by using nuclear magnetic resonance and Fourier transform infrared spectroscopy (FTIR). The relative intensities of the bands at 1,183 and 1,228 cm⁻¹ in the FTIR spectra enabled the rapid detection and differentiation of P(3HB-co-3H4MV) from other types of PHA. In addition, the presence of 3H4MV units in the copolymer was found to considerably lower the melting temperature and enthalpy of fusion values compared with poly(3-hydroxybutyrate) (P(3HB)). The copolymer exhibited higher thermo-degradation temperature but similar molecular weight and polydispersity compared with P(3HB).
    Matched MeSH terms: Polyesters/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links