RESULTS: Both laboratory approaches yielded complete mtDNA genomes from M. f. fascicularis with high accuracy and/or coverage. According to our phylogenetic reconstructions, M. f. fascicularis initially diverged into two clades 1.70 million years ago (Ma), with one including haplotypes from mainland Southeast Asia, the Malay Peninsula and North Sumatra (Clade A) and the other, haplotypes from the islands of Bangka, Java, Borneo, Timor, and the Philippines (Clade B). The three geographical populations of Clade A appear as paraphyletic groups, while local populations of Clade B form monophyletic clades with the exception of a Philippine individual which is nested within the Borneo clade. Further, in Clade B the branching pattern among main clades/lineages remains largely unresolved, most likely due to their relatively rapid diversification 0.93-0.84 Ma.
CONCLUSIONS: Both laboratory methods have proven to be powerful to generate complete mtDNA genome data with similarly high accuracy, with the DNA-capture and high-throughput sequencing approach as the most promising and only practical option to obtain such data from highly degraded DNA, in time and with relatively low costs. The application of complete mtDNA genomes yields new insights into the evolutionary history of M. f. fascicularis by providing a more robust phylogeny and more reliable divergence age estimations than earlier studies.
RESULTS: Based on Y-DNA, we confirm the presence of two lineages of M. fascicularis: the Indochinese and Sundaic lineages. The Indochinese lineage is represented by M. fascicularis located northwards of the Surat Thani-Krabi depression region and is introgressed by the Macaca mulatta Y-DNA. The Sundaic lineage is free from such hybridization event, thus defined as the original carrier of the M. fascicularis Y-DNA. We further revealed that the Sundaic lineage differentiated into two forms: the insular and the continental forms. The insular form, which represents the ancestral form of M. fascicularis, consists of two haplotypes: a single homogenous haplotype occupying the island of Borneo, Philippines, and southern Sumatra; and the Javan haplotype. The more diverse continental form consists of 17 haplotypes in which a dominant haplotype was shared by individuals from southern Thai Peninsular (south of Surat Thani-Krabi depression), Peninsular Malaysia, and Sumatra. Uniquely, Sumatra contains both the continental and insular Y-DNA which can be explained by a secondary contact hypothesis.
CONCLUSIONS: Overall, the findings in this study are important: (1) to help authority particularly in Malaysia on the population management activities including translocation and culling of conflict M. fascicularis, (2) to identify the unknown origin of captive M. fascicularis used in biomedical research, and; (3) the separation between the continental and insular forms warrants for the treatment as separate management units.