Displaying publications 41 - 60 of 126 in total

Abstract:
Sort:
  1. Rassam MA, Zainal A, Maarof MA
    Sensors (Basel), 2013;13(8):10087-122.
    PMID: 23966182 DOI: 10.3390/s130810087
    Wireless Sensor Networks (WSNs) are important and necessary platforms for the future as the concept "Internet of Things" has emerged lately. They are used for monitoring, tracking, or controlling of many applications in industry, health care, habitat, and military. However, the quality of data collected by sensor nodes is affected by anomalies that occur due to various reasons, such as node failures, reading errors, unusual events, and malicious attacks. Therefore, anomaly detection is a necessary process to ensure the quality of sensor data before it is utilized for making decisions. In this review, we present the challenges of anomaly detection in WSNs and state the requirements to design efficient and effective anomaly detection models. We then review the latest advancements of data anomaly detection research in WSNs and classify current detection approaches in five main classes based on the detection methods used to design these approaches. Varieties of the state-of-the-art models for each class are covered and their limitations are highlighted to provide ideas for potential future works. Furthermore, the reviewed approaches are compared and evaluated based on how well they meet the stated requirements. Finally, the general limitations of current approaches are mentioned and further research opportunities are suggested and discussed.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  2. Lee CK, Chang CC, Johar A, Puwira O, Roshidah B
    JAMA Dermatol, 2013 Mar;149(3):295-9.
    PMID: 23682364
    To determine the prevalence of fingerprint verification failure and to define and quantify the fingerprint changes associated with fingerprint verification failure.
    Matched MeSH terms: Pattern Recognition, Automated*
  3. Seman A, Bakar ZA, Isa MN
    BMC Res Notes, 2012;5:557.
    PMID: 23039132 DOI: 10.1186/1756-0500-5-557
    Y-Short Tandem Repeats (Y-STR) data consist of many similar and almost similar objects. This characteristic of Y-STR data causes two problems with partitioning: non-unique centroids and local minima problems. As a result, the existing partitioning algorithms produce poor clustering results.
    Matched MeSH terms: Pattern Recognition, Automated/statistics & numerical data*
  4. Hamedi M, Salleh ShH, Tan TS, Ismail K, Ali J, Dee-Uam C, et al.
    Int J Nanomedicine, 2011;6:3461-72.
    PMID: 22267930 DOI: 10.2147/IJN.S26619
    The authors present a new method of recognizing different human facial gestures through their neural activities and muscle movements, which can be used in machine-interfacing applications. Human-machine interface (HMI) technology utilizes human neural activities as input controllers for the machine. Recently, much work has been done on the specific application of facial electromyography (EMG)-based HMI, which have used limited and fixed numbers of facial gestures. In this work, a multipurpose interface is suggested that can support 2-11 control commands that can be applied to various HMI systems. The significance of this work is finding the most accurate facial gestures for any application with a maximum of eleven control commands. Eleven facial gesture EMGs are recorded from ten volunteers. Detected EMGs are passed through a band-pass filter and root mean square features are extracted. Various combinations of gestures with a different number of gestures in each group are made from the existing facial gestures. Finally, all combinations are trained and classified by a Fuzzy c-means classifier. In conclusion, combinations with the highest recognition accuracy in each group are chosen. An average accuracy >90% of chosen combinations proved their ability to be used as command controllers.
    Matched MeSH terms: Pattern Recognition, Automated/methods
  5. Muda HM, Saad P, Othman RM
    Comput Biol Med, 2011 Aug;41(8):687-99.
    PMID: 21704312 DOI: 10.1016/j.compbiomed.2011.06.004
    Remote protein homology detection and fold recognition refer to detection of structural homology in proteins where there are small or no similarities in the sequence. To detect protein structural classes from protein primary sequence information, homology-based methods have been developed, which can be divided to three types: discriminative classifiers, generative models for protein families and pairwise sequence comparisons. Support Vector Machines (SVM) and Neural Networks (NN) are two popular discriminative methods. Recent studies have shown that SVM has fast speed during training, more accurate and efficient compared to NN. We present a comprehensive method based on two-layer classifiers. The 1st layer is used to detect up to superfamily and family in SCOP hierarchy using optimized binary SVM classification rules. It used the kernel function known as the Bio-kernel, which incorporates the biological information in the classification process. The 2nd layer uses discriminative SVM algorithm with string kernel that will detect up to protein fold level in SCOP hierarchy. The results obtained were evaluated using mean ROC and mean MRFP and the significance of the result produced with pairwise t-test was tested. Experimental results show that our approaches significantly improve the performance of remote protein homology detection and fold recognition for all three different version SCOP datasets (1.53, 1.67 and 1.73). We achieved 4.19% improvements in term of mean ROC in SCOP 1.53, 4.75% in SCOP 1.67 and 4.03% in SCOP 1.73 datasets when compared to the result produced by well-known methods. The combination of first layer and second layer of BioSVM-2L performs well in remote homology detection and fold recognition even in three different versions of datasets.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  6. Yap KS, Lim CP, Au MT
    IEEE Trans Neural Netw, 2011 Dec;22(12):2310-23.
    PMID: 22067292 DOI: 10.1109/TNN.2011.2173502
    Generalized adaptive resonance theory (GART) is a neural network model that is capable of online learning and is effective in tackling pattern classification tasks. In this paper, we propose an improved GART model (IGART), and demonstrate its applicability to power systems. IGART enhances the dynamics of GART in several aspects, which include the use of the Laplacian likelihood function, a new vigilance function, a new match-tracking mechanism, an ordering algorithm for determining the sequence of training data, and a rule extraction capability to elicit if-then rules from the network. To assess the effectiveness of IGART and to compare its performances with those from other methods, three datasets that are related to power systems are employed. The experimental results demonstrate the usefulness of IGART with the rule extraction capability in undertaking classification problems in power systems engineering.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  7. Hasan S, Shamsuddin SM
    Comput Intell Neurosci, 2011;2011:121787.
    PMID: 21876686 DOI: 10.1155/2011/121787
    Multistrategy Learning of Self-Organizing Map (SOM) and Particle Swarm Optimization (PSO) is commonly implemented in clustering domain due to its capabilities in handling complex data characteristics. However, some of these multistrategy learning architectures have weaknesses such as slow convergence time always being trapped in the local minima. This paper proposes multistrategy learning of SOM lattice structure with Particle Swarm Optimisation which is called ESOMPSO for solving various classification problems. The enhancement of SOM lattice structure is implemented by introducing a new hexagon formulation for better mapping quality in data classification and labeling. The weights of the enhanced SOM are optimised using PSO to obtain better output quality. The proposed method has been tested on various standard datasets with substantial comparisons with existing SOM network and various distance measurement. The results show that our proposed method yields a promising result with better average accuracy and quantisation errors compared to the other methods as well as convincing significant test.
    Matched MeSH terms: Pattern Recognition, Automated/methods
  8. Chai HY, Wee LK, Swee TT, Salleh ShH, Chea LY
    Biomed Eng Online, 2011;10:87.
    PMID: 21952080 DOI: 10.1186/1475-925X-10-87
    Segmentation is the most crucial part in the computer-aided bone age assessment. A well-known type of segmentation performed in the system is adaptive segmentation. While providing better result than global thresholding method, the adaptive segmentation produces a lot of unwanted noise that could affect the latter process of epiphysis extraction.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  9. Ghanizadeh A, Abarghouei AA, Sinaie S, Saad P, Shamsuddin SM
    Appl Opt, 2011 Jul 1;50(19):3191-200.
    PMID: 21743518 DOI: 10.1364/AO.50.003191
    Iris-based biometric systems identify individuals based on the characteristics of their iris, since they are proven to remain unique for a long time. An iris recognition system includes four phases, the most important of which is preprocessing in which the iris segmentation is performed. The accuracy of an iris biometric system critically depends on the segmentation system. In this paper, an iris segmentation system using edge detection techniques and Hough transforms is presented. The newly proposed edge detection system enhances the performance of the segmentation in a way that it performs much more efficiently than the other conventional iris segmentation methods.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  10. Senanayake CM, Senanayake SM
    IEEE Trans Inf Technol Biomed, 2010 Sep;14(5):1173-9.
    PMID: 20801745 DOI: 10.1109/TITB.2010.2058813
    An intelligent gait-phase detection algorithm based on kinematic and kinetic parameters is presented in this paper. The gait parameters do not vary distinctly for each gait phase; therefore, it is complex to differentiate gait phases with respect to a threshold value. To overcome this intricacy, the concept of fuzzy logic was applied to detect gait phases with respect to fuzzy membership values. A real-time data-acquisition system was developed consisting of four force-sensitive resistors and two inertial sensors to obtain foot-pressure patterns and knee flexion/extension angle, respectively. The detected gait phases could be further analyzed to identify abnormality occurrences, and hence, is applicable to determine accurate timing for feedback. The large amount of data required for quality gait analysis necessitates the utilization of information technology to store, manage, and extract required information. Therefore, a software application was developed for real-time acquisition of sensor data, data processing, database management, and a user-friendly graphical-user interface as a tool to simplify the task of clinicians. The experiments carried out to validate the proposed system are presented along with the results analysis for normal and pathological walking patterns.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  11. Zabidi A, Lee YK, Mansor W, Yassin IM, Sahak R
    PMID: 21096346 DOI: 10.1109/IEMBS.2010.5626712
    This paper presents a new application of the Particle Swarm Optimization (PSO) algorithm to optimize Mel Frequency Cepstrum Coefficients (MFCC) parameters, in order to extract an optimal feature set for diagnosis of hypothyroidism in infants using Multi-Layer Perceptrons (MLP) neural network. MFCC features is influenced by the number of filter banks (f(b)) and the number of coefficients (n(c)) used. These parameters are critical in representation of the features as they affect the resolution and dimensionality of the features. In this paper, the PSO algorithm was used to optimize the values of f(b) and n(c). The MFCC features based on the PSO optimization were extracted from healthy and unhealthy infant cry signals and used to train MLP in the classification of hypothyroid infant cries. The results indicate that the PSO algorithm could determine the optimum combination of f(b) and n(c) that produce the best classification accuracy of the MLP.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  12. Seng WC, Mirisaee SH
    J Med Syst, 2011 Aug;35(4):571-8.
    PMID: 20703533 DOI: 10.1007/s10916-009-9393-3
    Content-based image retrieval techniques have been extensively studied for the past few years. With the growth of digital medical image databases, the demand for content-based analysis and retrieval tools has been increasing remarkably. Blood cell image is a key diagnostic tool for hematologists. An automated system that can retrieved relevant blood cell images correctly and efficiently would save the effort and time of hematologists. The purpose of this work is to develop such a content-based image retrieval system. Global color histogram and wavelet-based methods are used in the prototype. The system allows users to search by providing a query image and select one of four implemented methods. The obtained results demonstrate the proposed extended query refinement has the potential to capture a user's high level query and perception subjectivity by dynamically giving better query combinations. Color-based methods performed better than wavelet-based methods with regard to precision, recall rate and retrieval time. Shape and density of blood cells are suggested as measurements for future improvement. The system developed is useful for undergraduate education.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  13. Saleh MD, Eswaran C, Mueen A
    J Digit Imaging, 2011 Aug;24(4):564-72.
    PMID: 20524139 DOI: 10.1007/s10278-010-9302-9
    This paper focuses on the detection of retinal blood vessels which play a vital role in reducing the proliferative diabetic retinopathy and for preventing the loss of visual capability. The proposed algorithm which takes advantage of the powerful preprocessing techniques such as the contrast enhancement and thresholding offers an automated segmentation procedure for retinal blood vessels. To evaluate the performance of the new algorithm, experiments are conducted on 40 images collected from DRIVE database. The results show that the proposed algorithm performs better than the other known algorithms in terms of accuracy. Furthermore, the proposed algorithm being simple and easy to implement, is best suited for fast processing applications.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  14. Hariharan M, Chee LS, Yaacob S
    J Med Syst, 2012 Jun;36(3):1309-15.
    PMID: 20844933 DOI: 10.1007/s10916-010-9591-z
    Acoustic analysis of infant cry signals has been proven to be an excellent tool in the area of automatic detection of pathological status of an infant. This paper investigates the application of parameter weighting for linear prediction cepstral coefficients (LPCCs) to provide the robust representation of infant cry signals. Three classes of infant cry signals were considered such as normal cry signals, cry signals from deaf babies and babies with asphyxia. A Probabilistic Neural Network (PNN) is suggested to classify the infant cry signals into normal and pathological cries. PNN is trained with different spread factor or smoothing parameter to obtain better classification accuracy. The experimental results demonstrate that the suggested features and classification algorithms give very promising classification accuracy of above 98% and it expounds that the suggested method can be used to help medical professionals for diagnosing pathological status of an infant from cry signals.
    Matched MeSH terms: Pattern Recognition, Automated/methods
  15. Wan-Mamat WM, Isa NA, Wahab HA, Wan-Mamat WM
    PMID: 19964424 DOI: 10.1109/IEMBS.2009.5333747
    An intelligent prediction system has been developed to discriminate drug-like and non drug-like molecules pattern. The system is constructed by using the application of advanced version of standard multilayer perceptron (MLP) neural network called Hybrid Multilayer Perceptron (HMLP) neural network and trained using Modified Recursive Prediction Error (MRPE) training algorithm. In this work, a well understood and easy excess Rule of Five + Veber filter properties are selected as the topological descriptor. The main idea behind the selection of this simple descriptor is to assure that the system could be used widely, beneficial and more advantageous regardless at all user level within a drug discovery organization.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  16. Haidar AM, Mohamed A, Al-Dabbagh M, Hussain A, Masoum M
    Int J Neural Syst, 2009 Dec;19(6):473-9.
    PMID: 20039470
    Load shedding is some of the essential requirement for maintaining security of modern power systems, particularly in competitive energy markets. This paper proposes an intelligent scheme for fast and accurate load shedding using neural networks for predicting the possible loss of load at the early stage and neuro-fuzzy for determining the amount of load shed in order to avoid a cascading outage. A large scale electrical power system has been considered to validate the performance of the proposed technique in determining the amount of load shed. The proposed techniques can provide tools for improving the reliability and continuity of power supply. This was confirmed by the results obtained in this research of which sample results are given in this paper.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  17. Basu K, Sriraam N, Richard RJ
    J Med Syst, 2007 Aug;31(4):247-53.
    PMID: 17685148
    For a given DNA sequence, it is well known that pair wise alignment schemes are used to determine the similarity with the DNA sequences available in the databanks. The efficiency of the alignment decides the type of amino acids and its corresponding proteins. In order to evaluate the given DNA sequence for its proteomic identity, a pattern matching approach is proposed in this paper. A block based semi-global alignment scheme is introduced to determine the similarity between the DNA sequences (known and given). The two DNA sequences are divided into blocks of equal length and alignment is performed which minimizes the computational complexity. The efficiency of the alignment scheme is evaluated using the parameter, percentage of similarity (POS). Four essential DNA version of the amino acids that emphasize the importance of proteomic functionalities are chosen as patterns and matching is performed with the known and given DNA sequences to determine the similarity between them. The ratio of amino acid counts between the two sequences is estimated and the results are compared with that of the POS value. It is found from the experimental results that higher the POS value and the pattern matching higher are the similarity between the two DNA sequences. The optimal block is also identified based on the POS value and amino acids count.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  18. Ahmad Fadzil MH, Izhar LI, Venkatachalam PA, Karunakar TV
    J Med Eng Technol, 2007 Nov-Dec;31(6):435-42.
    PMID: 17994417 DOI: 10.1080/03091900601111201
    Information about retinal vasculature morphology is used in grading the severity and progression of diabetic retinopathy. An image analysis system can help ophthalmologists make accurate and efficient diagnoses. This paper presents the development of an image processing algorithm for detecting and reconstructing retinal vasculature. The detection of the vascular structure is achieved by image enhancement using contrast limited adaptive histogram equalization followed by the extraction of the vessels using bottom-hat morphological transformation. For reconstruction of the complete retinal vasculature, a region growing technique based on first-order Gaussian derivative is developed. The technique incorporates both gradient magnitude change and average intensity as the homogeneity criteria that enable the process to adapt to intensity changes and intensity spread over the vasculature region. The reconstruction technique reduces the required number of seeds to near optimal for the region growing process. It also overcomes poor performance of current seed-based methods, especially with low and inconsistent contrast images as normally seen in vasculature regions of fundus images. Simulations of the algorithm on 20 test images from the DRIVE database show that it outperforms many other published methods and achieved an accuracy range (ability to detect both vessel and non-vessel pixels) of 0.91 - 0.95, a sensitivity range (ability to detect vessel pixels) of 0.91 - 0.95 and a specificity range (ability to detect non-vessel pixels) of 0.88 - 0.94.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  19. Mat-Isa NA, Mashor MY, Othman NH
    Artif Intell Med, 2008 Jan;42(1):1-11.
    PMID: 17996432
    This paper proposes to develop an automated diagnostic system for cervical pre-cancerous. METHODS AND DATA SAMPLES: The proposed automated diagnostic system consists of two parts; an automatic feature extraction and an intelligent diagnostic. In the automatic feature extraction, the system automatically extracts four cervical cells features (i.e. nucleus size, nucleus grey level, cytoplasm size and cytoplasm grey level). A new features extraction algorithm called region-growing-based features extraction (RGBFE) is proposed to extract the cervical cells features. The extracted features will then be fed as input data to the intelligent diagnostic part. A new artificial neural network (ANN) architecture called hierarchical hybrid multilayered perceptron (H(2)MLP) network is proposed to predict the cervical pre-cancerous stage into three classes, namely normal, low grade intra-epithelial squamous lesion (LSIL) and high grade intra-epithelial squamous lesion (HSIL). We empirically assess the capability of the proposed diagnostic system using 550 reported cases (211 normal cases, 143 LSIL cases and 196 HSIL cases).
    Matched MeSH terms: Pattern Recognition, Automated/methods
  20. Javed F, Venkatachalam PA, Hani AF
    J Med Eng Technol, 2007 Sep-Oct;31(5):341-50.
    PMID: 17701779 DOI: 10.1080/03091900600887876
    Cardiovascular disease (CVD) is the leading cause of death worldwide, and due to the lack of early detection techniques, the incidence of CVD is increasing day by day. In order to address this limitation, a knowledge based system with embedded intelligent heart sound analyser (KBHSA) has been developed to diagnose cardiovascular disorders at early stages. The system analyses digitized heart sounds that are recorded from an electronic stethoscope using advanced digital signal processing and artificial intelligence techniques. KBHSA takes into account data including the patient's personal and past medical history, clinical examination, auscultation findings, chest x-ray and echocardiogram, and provides a list of diseases that it has diagnosed. The system can assist the general physician in making more accurate and reliable diagnosis under emergency conditions where expert cardiologists and advanced equipment are not readily available. To test the validity of the system, abnormal heart sound samples and medical data from 40 patients were recorded and analysed. The diagnoses made by the system were counter checked by four senior cardiologists in Malaysia. The results show that the findings of KBHSA coincide with those of cardiologists.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links