METHODS: We systematically reviewed Medline and Embase for population-based studies reporting hospitalization rates for IBD, Crohn's disease (CD), or ulcerative colitis (UC) in the 21st century. Log-linear models were used to calculate the average annual percentage change (AAPC) with associated 95% confidence intervals (95% CIs). Random-effects meta-analysis pooled country-level AAPCs. Data were stratified by the epidemiologic stage of a region: compounding prevalence (stage 3) in North America, Western Europe, and Oceania vs acceleration of incidence (stage 2) in Asia, Eastern Europe, and Latin America vs emergence (stage 1) in developing countries.
RESULTS: Hospitalization rates for a primary diagnosis of IBD were stable in countries in stage 3 (AAPC, -0.13%; 95% CI, -0.72 to 0.97), CD (AAPC, 0.20%; 95% CI, -1.78 to 2.17), and UC (AAPC, 0.02%; 95% CI, -0.91 to 0.94). In contrast, hospitalization rates for a primary diagnosis were increasing in countries in stage 2 for IBD (AAPC, 4.44%; 95% CI, 2.75 to 6.14), CD (AAPC, 8.34%; 95% CI, 4.38 to 12.29), and UC (AAPC, 3.90; 95% CI, 1.29 to 6.52). No population-based studies were available for developing regions in stage 1 (emergence).
CONCLUSIONS: Hospitalization rates for IBD are stabilizing in countries in stage 3, whereas newly industrialized countries in stage 2 have rapidly increasing hospitalization rates, contributing to an increasing burden on global health care systems.
DESIGN: A prospective cohort study.
SETTING: The study was conducted across 623 ICUs of 224 hospitals in 114 cities in 37 African, Asian, Eastern European, Latin American, and Middle Eastern countries.
PARTICIPANTS: The study included 169,036 patients, hospitalized for 1,166,593 patient days.
METHODS: Data collection took place from January 1, 2014, to February 12, 2022. We identified CAUTI rates per 1,000 UC days and UC device utilization (DU) ratios stratified by country, by ICU type, by facility ownership type, by World Bank country classification by income level, and by UC type. To estimate CAUTI risk factors, we analyzed 11 variables using multiple logistic regression.
RESULTS: Participant patients acquired 2,010 CAUTIs. The pooled CAUTI rate was 2.83 per 1,000 UC days. The highest CAUTI rate was associated with the use of suprapubic catheters (3.93 CAUTIs per 1,000 UC days); with patients hospitalized in Eastern Europe (14.03) and in Asia (6.28); with patients hospitalized in trauma (7.97), neurologic (6.28), and neurosurgical ICUs (4.95); with patients hospitalized in lower-middle-income countries (3.05); and with patients in public hospitals (5.89).The following variables were independently associated with CAUTI: Age (adjusted odds ratio [aOR], 1.01; P < .0001), female sex (aOR, 1.39; P < .0001), length of stay (LOS) before CAUTI-acquisition (aOR, 1.05; P < .0001), UC DU ratio (aOR, 1.09; P < .0001), public facilities (aOR, 2.24; P < .0001), and neurologic ICUs (aOR, 11.49; P < .0001).
CONCLUSIONS: CAUTI rates are higher in patients with suprapubic catheters, in middle-income countries, in public hospitals, in trauma and neurologic ICUs, and in Eastern European and Asian facilities.Based on findings regarding risk factors for CAUTI, focus on reducing LOS and UC utilization is warranted, as well as implementing evidence-based CAUTI-prevention recommendations.
OBJECTIVES: To review the evidence on the application of the new VAE surveillance definition in paediatric population and examine the potential challenges in clinical practice.
REVIEW METHODS: A systematic approach was used to locate and synthesise the relevant paediatric literature. Studies were appraised according to epidemiological appraisal instrument (EAI) and the grades of evidence in the National Health Medical Research Council (NHMRC) guidelines.
RESULTS: Seven studies met the inclusion criteria. Quality of study methods was above 50% on the EAI. The overall grade of evidence was assessed as C (satisfactory). The incidence of VAE in children ranged from 1.1 to 20.9 per 1000 ventilator days as a result of variations in surveillance criteria across included studies. There is little agreement between the new VAE and PNU/VAP surveillance definition in the identification of VAP. Challenges in the application of VAE surveillance were related to; the difference in modes of ventilation used in children versus adults, inconclusive criteria tailored to paediatric samples and a lack of data that support for automatic data extraction applied in paediatric studies.
CONCLUSION: This review demonstrated promising evidence using the new VAE surveillance definition to define the VAE in children, but the level of the evidence is low. Before the possibility of real implementation in clinical settings, challenges related to VAE paediatric specific criteria' and the value of automated data collection need to be considered.