Displaying publications 41 - 53 of 53 in total

Abstract:
Sort:
  1. Gadhave D, Rasal N, Sonawane R, Sekar M, Kokare C
    Int J Biol Macromol, 2021 Jan 15;167:906-920.
    PMID: 33186648 DOI: 10.1016/j.ijbiomac.2020.11.047
    The research work was intended to formulate teriflunomide (TFM) loaded nano lipid-based (TNLC) carbopol-gellan gum in situ gel (TNLCGHG) and to investigate its therapeutic efficacy against glioma, a brain and spine tumor. Nanoformulation was developed using gellan gum and carbopol 974P as gelling and mucoadhesive agents, respectively, Glyceryl di-behenate and Glyceryl mono-linoleate blend as lipids, and Gelucire 44/14: water blend as surfactant system. Globule size, PDI, zeta potential, encapsulation efficiency, mucoadhesive strength, and nasal permeation were found to be 117.80 nm, 0.56, -21.86 mV, 81.16%, 4.80 g, and 904 μg/cm2, respectively. Anticancer efficacy of TFM-loaded nano lipid-based carbopol-gellan gum in situ gel (TNLCGHG) was determined in human U-87MG glioma cell line. IC50 was found 7.0 μg/mL for TNLCGHG, 4.8 μg/mL for pure TFM, and 78.5 μg/mL for TNLC, which approve the superiority of surfactant along with gellan gum as permeation enhancer. Brain Cmax for technetium (99mTC) labeled intranasal (i.n.) 99mTC-TNLCGHG was found 2-folds higher than 99mTC-TNLC (i.n.) and 99mTC-TNLC intravenous (i.v.) because the TNLCGHG formulation contains surfactant with natural gelling polymers, which promisingly improved drug permeability. Finally, this research revealed encouraging outcomes and successfully developed intranasal TNLCGHG nanoformulation as a novel tool for safe delivery of TFM in glioma patients.
    Matched MeSH terms: Glioma/drug therapy
  2. Selby R, Pereira N
    Int Surg, 1973 Aug;58(8):536-41.
    PMID: 4738062
    Matched MeSH terms: Glioma/epidemiology
  3. Loh CK, Weis B, van Velthoven V, Reiff C, Rössler J
    J Neurol Sci, 2015 Nov 15;358(1-2):522-4.
    PMID: 26474792 DOI: 10.1016/j.jns.2015.09.375
    Optic glioma (OPG) accounts for 4-8% of all brain tumors in children. En-block removal of intraorbital tumor is recommended in cases with disfiguring exophthalmos and impaired vision. Surgical resection of intraorbital optic nerve (ON) poses the risks of permanent ptosis and globe atrophy. We present here the case of a 4-year-old boy with exophthalmos and near blindness due to an intraorbital OPG. Despite chemotherapy he showed progressive exophthalmos and vision loss. Bony orbital decompression with ON transection temporally reduced his exophthalmos. OPG resection was required later for recurrence of his exophthalmos secondary to tumor progression. Post operatively, he had preserved oculomotor nerve functions but developed globe ischemia. Unusually, his ischemic globe caused him to have pain and severe photophobia, which later lead to enucleation. Photophobia has been reported in blind patients. Animal models and MRI functional imaging showed activation of trigeminal pathway during photophobia in completely transected ON. However, the exact neuro-ophthalmology pathway requires further study.
    Matched MeSH terms: Optic Nerve Glioma
  4. Jim HS, Lin HY, Tyrer JP, Lawrenson K, Dennis J, Chornokur G, et al.
    J Genet Genome Res, 2015 09 15;2(2).
    PMID: 26807442
    Disruption in circadian gene expression, whether due to genetic variation or environmental factors (e.g., light at night, shiftwork), is associated with increased incidence of breast, prostate, gastrointestinal and hematologic cancers and gliomas. Circadian genes are highly expressed in the ovaries where they regulate ovulation; circadian disruption is associated with several ovarian cancer risk factors (e.g., endometriosis). However, no studies have examined variation in germline circadian genes as predictors of ovarian cancer risk and invasiveness. The goal of the current study was to examine single nucleotide polymorphisms (SNPs) in circadian genes BMAL1, CRY2, CSNK1E, NPAS2, PER3, REV1 and TIMELESS and downstream transcription factors KLF10 and SENP3 as predictors of risk of epithelial ovarian cancer (EOC) and histopathologic subtypes. The study included a test set of 3,761 EOC cases and 2,722 controls and a validation set of 44,308 samples including 18,174 (10,316 serous) cases and 26,134 controls from 43 studies participating in the Ovarian Cancer Association Consortium (OCAC). Analysis of genotype data from 36 genotyped SNPs and 4600 imputed SNPs indicated that the most significant association was rs117104877 in BMAL1 (OR = 0.79, 95% CI = 0.68-0.90, p = 5.59 × 10-4]. Functional analysis revealed a significant down regulation of BMAL1 expression following cMYC overexpression and increasing transformation in ovarian surface epithelial (OSE) cells as well as alternative splicing of BMAL1 exons in ovarian and granulosa cells. These results suggest that variation in circadian genes, and specifically BMAL1, may be associated with risk of ovarian cancer, likely through disruption of hormonal pathways.
    Matched MeSH terms: Glioma
  5. Angelopoulou E, Paudel YN, Piperi C
    Transl Oncol, 2019 Jul 25;12(10):1357-1363.
    PMID: 31352198 DOI: 10.1016/j.tranon.2019.07.001
    Gliomas present the most common type of brain tumors in adults, characterized by high morbidity and mortality. In search of potential molecular targets, members of paired box (PAX) family have been found expressed in neural crest cells, regulating their proliferation, apoptosis, migration and differentiation. Recently, PAX3 overexpression has been implicated in glioma tumorigenesis by enhancing proliferation, increasing invasiveness and inducing resistance to apoptosis of glioma cells, while maintaining brain glioma stem cells (BGSCs) stemness. Although the oncogenic potential of PAX3 in gliomas is still under investigation, experimental evidence suggests that PAX3 function is mainly mediated through the canonical and non-canonical Wnt signaling pathway as well as through its interaction with GFAP and p53 proteins. In addition, PAX3 may contribute to the chemoresistance of glioma cells and modulates the effectiveness of novel experimental therapies. Further evidence indicates that PAX3 may represent a novel diagnostic and prognostic biomarker for gliomas, facilitating personalized treatment. This review addresses the emerging role of PAX3 in glioma diagnosis, prognosis and treatment, aiming to shed more light on the underlying molecular mechanisms that could lead to more effective treatment approaches.
    Matched MeSH terms: Glioma
  6. Tan JY, Wijesinghe IVS, Alfarizal Kamarudin MN, Parhar I
    Cancers (Basel), 2021 Feb 04;13(4).
    PMID: 33557011 DOI: 10.3390/cancers13040607
    Paediatric gliomas categorised as low- or high-grade vary markedly from their adult counterparts, and denoted as the second most prevalent childhood cancers after leukaemia. As compared to adult gliomas, the studies of diagnostic and prognostic biomarkers, as well as the development of therapy in paediatric gliomas, are still in their infancy. A body of evidence demonstrates that B-Raf Proto-Oncogene or V-Raf Murine Sarcoma Viral Oncogene Homolog B (BRAF) and histone H3 mutations are valuable biomarkers for paediatric low-grade gliomas (pLGGs) and high-grade gliomas (pHGGs). Various diagnostic methods involving fluorescence in situ hybridisation, whole-genomic sequencing, PCR, next-generation sequencing and NanoString are currently used for detecting BRAF and histone H3 mutations. Additionally, liquid biopsies are gaining popularity as an alternative to tumour materials in detecting these biomarkers, but still, they cannot fully replace solid biopsies due to several limitations. Although histone H3 mutations are reliable prognosis biomarkers in pHGGs, children with these mutations have a dismal prognosis. Conversely, the role of BRAF alterations as prognostic biomarkers in pLGGs is still in doubt due to contradictory findings. The BRAF V600E mutation is seen in the majority of pLGGs (as seen in pleomorphic xanthoastrocytoma and gangliomas). By contrast, the H3K27M mutation is found in the majority of paediatric diffuse intrinsic pontine glioma and other midline gliomas in pHGGs. pLGG patients with a BRAF V600E mutation often have a lower progression-free survival rate in comparison to wild-type pLGGs when treated with conventional therapies. BRAF inhibitors (Dabrafenib and Vemurafenib), however, show higher overall survival and tumour response in BRAF V600E mutated pLGGs than conventional therapies in some studies. To date, targeted therapy and precision medicine are promising avenues for paediatric gliomas with BRAF V600E and diffuse intrinsic pontine glioma with the H3K27M mutations. Given these shortcomings in the current treatments of paediatric gliomas, there is a dire need for novel therapies that yield a better therapeutic response. The present review discusses the diagnostic tools and the perspective of liquid biopsies in the detection of BRAF V600E and H3K27M mutations. An in-depth understanding of these biomarkers and the therapeutics associated with the respective challenges will bridge the gap between paediatric glioma patients and the development of effective therapies.
    Matched MeSH terms: Glioma
  7. Othman AK, Udin N, Shab MS, Hamzah NA, Mat Azmi IS, Naing NN
    Med J Malaysia, 2020 11;75(6):705-709.
    PMID: 33219181
    INTRODUCTION: Brain tumour (BT) is a tremendous burden on patients, families as well as the surrounding communities, especially the healthcare services. It can be classified into either a benign slow growing tumour (non-cancerous) and malignant tumour (cancerous). The purpose of this study was to determine the incidence and pattern of brain tumour admitted to the Neurosurgery Department in Hospital Sultanah Nurzahirah (HSNZ), Terengganu, Malaysia.

    METHODS: This is a retrospective study of incidence and pattern of BT admitted to the Neurosurgery Department in HSNZ. Data was collected from the yearly census of BT registered from 2013 to 2018.

    RESULTS: A total number of 386 new cases of primary BT were registered. The number of cases of BT was found to be lowest among children (0 to 10 years old) with only 4.4% but at peak among elderly aged between 51 to 60 years old (26.2%). As for gender, males constituted about 44.5% (n=172) whereas females accounted for 55.5% (n= 214) of the cases. In total, meningioma was found to have the highest incidence (27.2%) followed by metastases brain tumour (18.1%) and glioma (17.4%).

    CONCLUSIONS: This study has shown that the incidence of BT was led by meningioma which had a high prevalence among the elderly population, followed by metastasis BT and gliomas.

    Matched MeSH terms: Glioma
  8. Goh KJ, Abdullah S, Wong WF, Yeap SS, Shahrizaila N, Tan CT
    Neurology Asia, 2014;19(4):409-412.
    MyJurnal
    We report a patient who presented with severe cold-induced allodynia and hyperhidrosis, and found to have acquired neuromyotonia (Isaacs syndrome) with high voltage-gated potassium channel (VGKC) antibody titre,positive contactin-associated protein 2 (CASPR2) and leucine-rich glioma-inactivated 1 (LGI1) antibodies. The patient also had positive anti-dsDNA and acetylcholine receptor (AChR) antibodies without clinical features of SLE or myasthenia gravis, suggesting a strong underlying autoimmune tendency. CT thorax showed no thymoma. Her symptoms improved with intravenous immunoglobulin infusion but recurred despite maintenance oral corticosteroids and carbamazepine. She has since been on regular IVIG infusions. Cold allodynia is an unusual presentation in acquired neuromyotonia.
    Matched MeSH terms: Glioma
  9. Lou Y, Shi J, Guo D, Qureshi AK, Song L
    Saudi J Biol Sci, 2017 May;24(4):803-807.
    PMID: 28490949 DOI: 10.1016/j.sjbs.2015.06.025
    Human glioma is a highly fatal tumor with a significant feature of immune suppression. The functions of PD-L1 refer to co-simulation and immune regulation. To investigate expression and functional activity of PD-L1 in human glioma cell in vivo and in vitro. Expressions of PD-L1mRNA and protein in the human glioma cell line were analyzed with quantitative RT-PCR and flow cytometer; and then expression of PD-L1 in tissue specimens of 10 glioma patients was treated with immunohistochemical analysis; glioma cell and allogeneic CD4+ and CD8+ T cells were co-cultured, and cytokine IFN-γ, IL-2 and IL-10 in cultured supernatant fluid were determined with ELISA; upon blocking the interaction between glioma cell and the immune cell with PD-L1 monoclonal antibody (5H1), surface markers on immune cells were analyzed using flow cytometer. All human glioma cell lines constitutively expressed PD-L1, and IFN-γ induced glioma cell to highly express PD-L1. It was shown through immunohistochemical analysis that glioma specimen expressed PD-L1, while expression of PD-L1 was not observed in normal tissue and normal human brain near the tumor location. The release of IFN-γ and IL-2 was inhibited, while IL-10 was increased slightly. Glioma cell may escape from immune recognition and injury with the help of PD-L1, which is a significant pathogenic mechanism of glioma.
    Matched MeSH terms: Glioma
  10. Kamarudin MNA, Parhar I
    Oncotarget, 2019 Jun 11;10(39):3952-3977.
    PMID: 31231472 DOI: 10.18632/oncotarget.26994
    Despite numerous advancements in the last decade, human gliomas such as astrocytoma and glioblastoma multiforme have the worst prognoses among all cancers. Anti-psychotic drugs are commonly prescribed to treat mental disorders among cancer patients, and growing empirical evidence has revealed their antitumor, anti-metastatic, anti-angiogenic, anti-proliferative, chemo-preventive, and neo-adjuvant efficacies in various in vitro, in vivo, and clinical glioma models. Anti-psychotic drugs have drawn the attention of physicians and researchers owing to their beneficial effects in the prevention and treatment of gliomas. This review highlights data on the therapeutic potential of various anti-psychotic drugs as anti-proliferative, chemopreventive, and anti-angiogenic agents in various glioma models via the modulation of upstream and downstream molecular targets involved in apoptosis, autophagy, oxidative stress, inflammation, and the cell cycle in in vitro and in vivo preclinical and clinical stages among glioma patients. The ability of anti-psychotic drugs to modulate various signaling pathways and multidrug resistance-conferring proteins that enhance the efficacy of chemotherapeutic drugs with low side-effects exemplifies their great potential as neo-adjuvants and potential chemotherapeutics in single or multimodal treatment approach. Moreover, anti-psychotic drugs confer the ability to induce glioma into oligodendrocyte-like cells and neuronal-like phenotype cells with reversal of epigenetic alterations through inhibition of histone deacetylase further rationalize their use in glioma treatment. The improved understanding of anti-psychotic drugs as potential chemotherapeutic drugs or as neo-adjuvants will provide better information for their use globally as affordable, well-tolerated, and effective anticancer agents for human glioma.
    Matched MeSH terms: Glioma
  11. Ghazali MM, Mohd Zan MS, Yusof AA, Abdullah JM, Jaffar H, Ariff AR, et al.
    Malays J Med Sci, 2005 Jul;12(2):27-33.
    PMID: 22605955 MyJurnal
    Neoplastic transformation appears to be a multi-step process in which the normal controls of cell proliferation and cell-cell interaction are lost, thus transforming normal cells into cancer. The tumorigenic process involves the interplay between oncogenes and tumour suppressor genes. In this study, we have selected the ras family, c-myc and epidermal growth factor receptor (EGFR) genes to detect whether their abnormalities are associated with the expression and progression of glioma cases in Malay patients. We have used the polymerase chain reaction-single stranded conformation polymorphism followed by direct sequencing for the study. For the ras gene family, we screened the point mutations in codons 12 and 61 of the H-, K-, and N-ras gene; for EGFR and c-myc, we analyzed only the exon 1 in glioma samples. In mutational screening analyses of the ras family, c-myc and EGFR gene, there was no mobility shift observed in any tumour analyzed. All patterns of single stranded conformation polymorphism (SSCP) band observed in tumour samples were normal compared to those in normal samples. The DNA sequencing results in all high-grade tumours showed that all base sequences were normal. All 48 patients survived after five years of treatment. In simple logistic regression analysis, variables which were found to be significant were hemiplegia (p=0.047) and response radiotherapy (p=0.003). Hemiplegics were 25 times more likely to have high pathological grade compared to those without. Patients with vascular involvement were 5.5 times more likely to have higher pathological grade. However, these findings were not significant in multivariate analysis. Patients who had radiotherapy were nearly 14 times more likely to have higher pathological grade. Multivariate analysis revealed that patients with hemiplegia were more likely to have higher pathological grade (p= 0.008). Those with higher pathological grading were 80 times more likely to have radiotherapy (p=0.004).
    Matched MeSH terms: Glioma
  12. Zainuddin N, Jaafart H, Isa MN, Abdullah JM
    Neurol Res, 2004 Jan;26(1):88-92.
    PMID: 14977064
    Recent advances in neuro-oncology have revealed different pathways of molecular oncogenesis in malignant gliomas including loss of heterozygosity on chromosomal regions harboring tumor suppressor genes. In the present study, we performed polymerase chain reaction-loss of heterozygosity (PCR-LOH) analysis using microsatellite markers to identify loss of heterozygosity on chromosomes 10q, 9p, 17p and 13q in the Malays with malignant gliomas. Of 12 cases with allelic losses, seven (58.3%) cases showed LOH on chromosome 10q, three (25.0%) cases showed LOH on chromosome 9p, four (33.3%) cases showed LOH on chromosome 17p and two (16.7%) cases showed LOH on chromosome 13q. The cases include five (41.7%) cases of glioblastoma multiforme, three (25.0%) cases of anaplastic astrocytoma, three (25.0%) cases of anaplastic oligodendroglioma and one (8.3%) case of anaplastic ependymoma. Four cases showed loss of heterozygosity on more than one locus. Our findings showed that loss of heterozygosity on specific chromosomal regions contributes to the molecular pathway of glioma progression in Malay population. In addition, these data provide useful evidence of molecular genetic alterations of malignant glioma in South East Asian patients, particularly in the East Coast of Malaysia.
    Matched MeSH terms: Glioma/genetics*
  13. Ismail S, Haris K, Abdul Ghani AR, Abdullah JM, Johan MF, Mohamed Yusoff AA
    J Asian Nat Prod Res, 2013 Sep;15(9):1003-12.
    PMID: 23869465 DOI: 10.1080/10286020.2013.818982
    Aloe emodin, one of the active compounds found in Aloe vera leaves, plays an important role in the regulation of cell growth and death. It has been reported to promote the anti-cancer effects in various cancer cells by inducing apoptosis. However, the mechanism of inducing apoptosis by this agent is poorly understood in glioma cells. This research is to investigate the apoptosis and cell cycle arrest inducing by aloe emodin on U87 human malignant glioma cells. Aloe emodin showed a time- and dose-dependent inhibition of U87 cells proliferation and decreased the percentage of viable U87 cells via the induction of apoptosis. Characteristic morphological changes, such as the formation of apoptotic bodies, were observed with confocal microscope by Annexin V-FITC/PI staining, supporting our viability study and flow cytometry analysis results. Our data also demonstrated that aloe emodin arrested the cell cycle in the S phase and promoted the loss of mitochondrial membrane potential in U87 cells that indicated the early event of the mitochondria-induced apoptotic pathway.
    Matched MeSH terms: Glioma
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links