Displaying publications 41 - 60 of 135 in total

Abstract:
Sort:
  1. Husnain AU, Mokhtar N, Mohamed Shah NB, Dahari MB, Azmi AA, Iwahashi M
    PLoS One, 2024;19(2):e0296969.
    PMID: 38394180 DOI: 10.1371/journal.pone.0296969
    There are three primary objectives of this work; first: to establish a gas concentration map; second: to estimate the point of emission of the gas; and third: to generate a path from any location to the point of emission for UAVs or UGVs. A mountable array of MOX sensors was developed so that the angles and distances among the sensors, alongside sensors data, were utilized to identify the influx of gas plumes. Gas dispersion experiments under indoor conditions were conducted to train machine learning algorithms to collect data at numerous locations and angles. Taguchi's orthogonal arrays for experiment design were used to identify the gas dispersion locations. For the second objective, the data collected after pre-processing was used to train an off-policy, model-free reinforcement learning agent with a Q-learning policy. After finishing the training from the training data set, Q-learning produces a table called the Q-table. The Q-table contains state-action pairs that generate an autonomous path from any point to the source from the testing dataset. The entire process is carried out in an obstacle-free environment, and the whole scheme is designed to be conducted in three modes: search, track, and localize. The hyperparameter combinations of the RL agent were evaluated through trial-and-error technique and it was found that ε = 0.9, γ = 0.9 and α = 0.9 was the fastest path generating combination that took 1258.88 seconds for training and 6.2 milliseconds for path generation. Out of 31 unseen scenarios, the trained RL agent generated successful paths for all the 31 scenarios, however, the UAV was able to reach successfully on the gas source in 23 scenarios, producing a success rate of 74.19%. The results paved the way for using reinforcement learning techniques to be used as autonomous path generation of unmanned systems alongside the need to explore and improve the accuracy of the reported results as future works.
    Matched MeSH terms: Gamma Rays
  2. Moradi F, Khandaker MU, Alrefae T, Ramazanian H, Bradley DA
    Appl Radiat Isot, 2019 Apr;146:120-126.
    PMID: 30769172 DOI: 10.1016/j.apradiso.2019.01.031
    Studies of radiation interactions with tissue equivalent material find importance in efforts that seek to avoid unjustifiable dose to patients, also in ensuring quality control of for instance nuclear medicine imaging equipment. Use of the Monte Carlo (MC) simulation tool in such characterization processes allows for the avoidance of costly experiments involving transmitted X- and γ-ray spectrometry. Present work investigates MC simulations of γ-ray transmission through tissue equivalent solid phantoms. Use has been made of a range of radionuclide gamma ray sources, 99mTc, 131I, 137Cs, 60Co (offering photons in the energy range from a few keV up to low MeV), popularly applied in medicine and in some cases for gauging in industry, obtaining the transmission spectra following their interaction with various phantom materials and thicknesses. In validation of the model, the simulated values of mass attenuation coefficients (μ/ρ) for different phantom materials and thicknesses were found to be in good agreement with reference values (NIST, 2004) to within 1.1% for all material compositions. For all of the primary photon energies and medium thicknesses of interest herein, results show that multiple scattering peaks are generally located at energies lower than 100 keV, although for the larger phantom thicknesses it is more difficult to distinguish single, double and multiple scattering in the gamma spectra. Transmitted photon spectra investigated for water, soft tissue, breast, brain and lung tissue slab phantoms are demonstrated to be practically independent of the phantom material, while a significant difference is observed for the spectra transmitted through bone that was proved to be due to the density effect and not material composition.
    Matched MeSH terms: Gamma Rays/adverse effects*; Gamma Rays/therapeutic use*
  3. Hashim S, Alajerami YS, Ramli AT, Ghoshal SK, Saleh MA, Abdul Kadir AB, et al.
    Appl Radiat Isot, 2014 Sep;91:126-30.
    PMID: 24929526 DOI: 10.1016/j.apradiso.2014.05.023
    Lithium potassium borate (LKB) glasses co-doped with TiO2 and MgO were prepared using the melt quenching technique. The glasses were cut into transparent chips and exposed to gamma rays of (60)Co to study their thermoluminescence (TL) properties. The TL glow curve of the Ti-doped material featured a single prominent peak at 230 °C. Additional incorporation of MgO as a co-activator enhanced the TL intensity threefold. LKB:Ti,Mg is a low-Z material (Z(eff)=8.89) with slow signal fading. Its radiation sensitivity is 12 times lower that the sensitivity of TLD-100. The dose response is linear at doses up to 10(3) Gy. The trap parameters, such as the kinetics order, activation energy, and frequency factor, which are related to the glow peak, were determined using TolAnal software.
    Matched MeSH terms: Gamma Rays
  4. Aizah N, Su Y, Shaifulnizam C, MRos M
    Malays Orthop J, 2014 Jul;8(2):66-8.
    PMID: 25279099 MyJurnal DOI: 10.5704/MOJ.1407.015
    Extruded bone is a rare complication of high energy open fractures, and there is only a handful of literature on reimplantation of the extruded segment. No clear guidelines exist regarding timing of reimplantation, stabilization of extruded bone segments, and also bone disinfection and sterilization techniques. Previous reports describe sterilization using thermal or chemical methods. We present a case of successful reimplantation of an extruded metaphyseal segment of femur after gamma sterilization in a fourteen- year old boy.
    Matched MeSH terms: Gamma Rays
  5. Bradley DA, Dahlan KZ, Roy SC
    Appl Radiat Isot, 2000 Oct;53(4-5):921-8.
    PMID: 11003542
    High-energy electron (2.0 MV) and gamma irradiation (60Co) has been used to modify polymeric silicone fluids of initial viscosities in the range, 90-700 cSt. Doses of electron and gamma radiation were delivered at rates of 0.246 kGy s(-1) and 15 kGy h(-1), respectively, exposure times being adjusted to ensure energy deposition in the range 30-360 kGy. Measurements were made using a differential viscometer based on a Bose Institute design. In line with expectation, samples of greater initial molecular weight (and hence greater viscosity), were observed to be more susceptible to radiation induced cross-linking than those of lower molecular weight. The role of dose rate and oxygen diffusion in determining the extent of change is discussed.
    Matched MeSH terms: Gamma Rays
  6. Chong CS, Ahmad GU
    Health Phys, 1982 Aug;43(2):272-3.
    PMID: 7129886
    Matched MeSH terms: Gamma Rays
  7. Asfahani J, Samuding K, Mostapa R, Othman O
    Appl Radiat Isot, 2021 Jan;167:109296.
    PMID: 33022484 DOI: 10.1016/j.apradiso.2020.109296
    Natural gamma ray well logging technique is used to characterize the radioactivity (GR) laterally and vertically in Banting district, SW of Malaysia. Seven drilled boreholes, along N-S profile with their natural gamma ray records are utilized to compute the heat production (HP) parameter, based on the Bucker and Rybach relationship.The analysis of 3467 measured points in those boreholes indicates that GR varies between 6.24 API and 358.4 API with an average of 79.95 API, while HP varies between 0.086 and 5.65 μw/m3 with an average of 1.25 μw/m3.The multi-fractal Concentration-Number (C-N) is used to characterize the radioactivity and heat production variations and to isolate different GR and HP populations in the study region. The high radioactivity and heat production ranges are mainly related to the silty clay layers, accompanied by uranium and thorium.
    Matched MeSH terms: Gamma Rays
  8. Tarawneh MA, Saraireh SA, Chen RS, Ahmad SH, Al-Tarawni MAM, Yu LJ
    Radiat Phys Chem Oxf Engl 1993, 2021 Feb;179:109168.
    PMID: 33100612 DOI: 10.1016/j.radphyschem.2020.109168
    A thermoplastic elastomer (TPE) based nanocomposite with the same weight ratio of hybrid nanofillers composed of carbon nanotubes (CNTs) and montmorillonite nanoclay (DK4) was prepared using a melt blending technique with an internal mixer. The TPE composite was blended from polylactic acid (PLA), liquid natural rubber (LNR) as a compatibilizer and natural rubber (NR) in a volume ratio of 70:10:20, respectively. The weight ratio of CNTs and DK4 was 2.5 wt%. The prepared samples were exposed to gamma radiation at range of 0-250 kGy. After exposure to gamma radiation, the mechanical, thermo-mechanical, thermal and electrical conductivity properties of the composites were significantly higher than unirradiated TPE composites as the irradiation doses increased up to 150 kGy. Transmission electron microscopy (TEM) micrographs revealed the good distribution and interaction between the nano-fillers and the matrix in the prepared TPE hybrid nanocomposites. In summary, the findings from this work definite that gamma irradiation might be a viable treatment to improve the properties of TPE nanocomposite for electronic packaging applications.
    Matched MeSH terms: Gamma Rays
  9. Wahib NB, Abdul Sani SF, Ramli A, Ismail SS, Abdul Jabar MH, Khandaker MU, et al.
    Radiat Environ Biophys, 2020 08;59(3):523-537.
    PMID: 32462382 DOI: 10.1007/s00411-020-00846-x
    Accidents resulting in widespread dispersal of radioactive materials have given rise to a need for materials that are convenient in allowing individual dose assessment. The present study examines natural Dead Sea salt adopted as a model thermoluminescence dosimetry system. Samples were prepared in two different forms, loose-raw and loose-ground, subsequently exposed to 60Co gamma-rays, delivering doses in the range 2-10 Gy. Key thermoluminescence (TL) properties were examined, including glow curves, dose response, sensitivity, reproducibility and fading. Glow curves shapes were found to be independent of given dose, prominent TL peaks for the raw and ground samples appearing in the temperature ranges 361-385 ºC and 366-401 ºC, respectively. The deconvolution of glow curves has been undertaken using GlowFit, resulting in ten overlapping first-order kinetic glow peaks. For both sample forms, the integrated TL yield displays linearity of response with dose, the loose-raw salt showing some 2.5 × the sensitivity of the ground salt. The samples showed similar degrees of fading, with respective residual signals 28 days post-irradiation of 66% and 62% for the ground and raw forms respectively; conversely, confronted by light-induced fading the respective signal losses were 62% and 80%. The effective atomic number of the Dead Sea salt of 16.3 is comparable to that of TLD-200 (Zeff 16.3), suitable as an environmental radiation monitor in accident situations but requiring careful calibration in the reconstruction of soft tissue dose (soft tissue Zeff 7.2). Sample luminescence studies were carried out via Raman and Photoluminescence spectroscopy as well as X-ray diffraction, ionizing radiation dependent variation in lattice structure being found to influence TL response.
    Matched MeSH terms: Gamma Rays
  10. Gharibshahi E, Saion E, Johnston RL, Ashraf A
    Appl Radiat Isot, 2019 May;147:204-210.
    PMID: 30953937 DOI: 10.1016/j.apradiso.2019.02.015
    Platinum nanoparticles were synthesized using the gamma radiolytic technique in an aqueous solution containing Platinum tetraammine chloride in presence of poly vinyl pyrrolidone, isopropanol, tetrahydrofuran and deionized water. The gamma irradiation was carried out in a60Co gamma source chamber and the particle size was found to decrease from 4.88 to 3.14 nm on increasing the gamma radiation dose from 80 to 120 kGy. UV-visible absorption spectra were measured and revealed two steady absorption maxima at 216 and 264 nm in the UV region, which was blue shifted (i.e. toward lower wavelength) with decreasing particle size. By taking the conduction electrons of an isolated particle that are not entirely free, but instead bound to their respective quantum levels, the optical absorption of platinum nanoparticles can be calculated via intra-band quantum excitation for particle sizes similar to those measured experimentally. We found that the calculated absorption maxima of electronic excitations matched the measured absorption maxima well. This finding suggests that the optical absorption of metal nanoparticles commonly applied in nanoscience and nanotechnology can be described accurately by the quantum excitation of conduction electrons.
    Matched MeSH terms: Gamma Rays
  11. Hossain MA, Islam JMM, Hoque MM, Nahar S, Khan MA
    Heliyon, 2021 Jan;7(1):e05881.
    PMID: 33458447 DOI: 10.1016/j.heliyon.2020.e05881
    Sodium alginate oligomers were tested for tea plant growth promoter and anti-fungal agent in this experiment. Sodium alginate solutions were irradiated by Co-60 gamma radiation with different radiation doses to produce the oligomers. Irradiated solutions were then diluted into 150, 300 and 500 ppm prior to foliar application. Solutions were applied through foliar spraying at 7 days interval and the best response of tea plants in terms of various attributes were recorded. Tea buds were collected in 10 days of interval and the growth attributes like- total number of buds, fresh weight of buds, average leaf area and weight per bud, weight of made tea etc. were calculated. The experiment was continued up to 12 weeks and the attributes were averaged to get results per plucking. 12 kGy radiation doses along with 300ppm solution showed the best results and about 36% increase in productivity was found based on the fresh weight of buds. Total fungal count in tea leaves was also found to be reduced greatly. Based on the present study, irradiated sodium alginate could be used as safe and environmentally friendly agent to increase tea production.
    Matched MeSH terms: Gamma Rays
  12. Mohd Adzahan, N., Mat Hashim, D., Muhammad, K., Abdul Rahman, R., Ghazali, Z., Hashim, K.
    MyJurnal
    Changes to the physicochemical properties of wheat, sago and tapioca starches subjected to gamma ray, electron beam and microwave irradiations and the conditions that lead to wheat starch having leaching behaviour similar to sago or tapioca starch were studied. The properties were characterised through swelling and leaching behaviours of the starch granules and retrogradation following pasting. The leaching of wheat starch increased tremendously and resulted in amylose to amylopectin ratios in the leachate similar to that of native sago and tapioca starches. This observation is significant as wheat starch is known to have a leachate composition of mostly amylose. This opens up the possibility of utilising wheat starch in snacks where tapioca and sago starch are commonly used. It was observed that the required conditions for such changes were exposure to microwave for 8 and 10 minutes, electron beam at 5 and 10 kGy and gamma ray at 5 kGy.
    Matched MeSH terms: Gamma Rays
  13. Jaafar Abdullah, Roslan Yahya, Lahasen@Norman Shah Dahing, Hearie Hassan, Engku Mohd Fahmi Engku Chik, Mohamad Rabaie Shari, et al.
    MyJurnal
    “Batu Bersurat Terengganu (inscribed stone)” is the oldest artifact with Jawi writing on it. The
    artifact proves that the Kingdom of Terengganu exist earlier than 1326 or 1386. To date, a lot of
    studies on the content of the inscription have been carried out by historians and archaeologists, but
    no scientific investigation about the material composition and its provenance has been performed.
    This paper focuses on the study of the origin of the Batu Bersurat Terengganu using NeutronInduced
    Prompt Gamma-Ray Techniques (NIPGAT). Portable NIPGAT system has been designed
    and developed based on volumetric measurement methods and it will be considered as a nondestructive
    testing. The system uses low activity of californium-252 (Cf-252) neutron radioactive
    sources, gamma ray spectroscopy and special computer software to carry out the investigation. The
    study found that the Batu Bersurat Terengganu is made of dolerite based on the elemental
    composition of the stone. Although most of the scientific data for the study of the origin are already
    obtained, but further research is still ongoing to complete the scope of this study.
    Matched MeSH terms: Gamma Rays
  14. Zainudin Jaafar, Mukhlis Mokhtar, Abu Bakar Mhd Ghazali
    MyJurnal
    Personal computer (PC) based user interface for equipment control and data acquisition from the nuclear counting system to count nuclear radiation energy from radioactive sources have been developed at Malaysian Nuclear Agency. Effort is made to ensure a good reliability of the system for nuclear counting, especially neutrons particles and gamma rays. It will be used in laboratory for testing and maintenance of nuclear spectrometry instruments. Personal computer is used to control the operation of equipment and data acquisition from counter/timer module. Control and data communication between PC and the Counter/ Timer is made through the USB' to RS 232 converter terminal. The program for this system was written using Labview 8.6 software on Windows XP environment. This system has been successfully tested using a pulse generator to simulate the detector signal for calibration and then followed by actual measurement using HE-3 detector.
    Matched MeSH terms: Gamma Rays
  15. Shakinah Salleh, Affrida Abu Hassan, Shuhaimi Shamsudin, Yahya Awang, Ab. Kahar Sandrang, Abdullah, Thohirah Lee
    MyJurnal
    Chrysanthemum morfolium is an important temperate cut flower and potted plant for Malaysian local market and exporter. Considering chrysanthemum as a popular vegetatively propagated ornamental plant, induce mutations for breeding purposes are more beneficial. Several of physical mutagens have been used in mutation breeding including x-rays, gamma rays and ion beams. Gamma rays and ion beams are from two different linear energy transfer (LET) which are low and high, respectively. The objective of this study was to compare the effectiveness of acute gamma and ion beam irradiation in generating flower colour mutations on nodal explants of Chrysanthemum morifblium cv. Reagan Red'. The nodal explants were irradiated with acute gamma (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110 and 120 Gy) and ion beam (0, 0.5, 1.0, 2.0, 3.0, 5.0, 8.0, 10, 15, 20 and 30 Gy). The optimal dose for in vitro shoot regeneration using acute gamma was in the range of 10 to .15.0Gy and for ion beam was between 3.5 to 4.OGv. Relative biological effectiveness for ion beam was found 3.75 higher than the acute gamma. The regenerated plantlets were planted in the greenhouse at MARDI, Cameron Highland for morphological screening. The highest frequency of flower colour mutation for acute gamma was 77.8% whilst for ion beam were between 42.3 to 58.3%.
    Matched MeSH terms: Gamma Rays
  16. Aida Nazlyn Nazari, Azhar Mohamad, Shuhaimi Shamsudin
    MyJurnal
    Assessing performance and genetic diversity of the wild material of oil palm is important for
    under- standing genetic structure of natural oil palm populations towards improvement of the
    crops. This in-formation is important for oil palm breeding programs, and also for continued exsitu
    conservation of the germplasm and breeding program in Malaysia. Mutation induction is one
    of the approaches in creating variants for selection in the breeding program. In this study, the
    effect of irradiated pollen towards pollen viability, bunches formation and number of
    parthenocarpic fruits were evaluated. Elaies guineensis Jacq. pollens were exposed to series of
    acute gamma radiation at dose 0, 10, 20, 40, 50, 100, 200, 300, 500, 100 and 2000 Gy . Pollen
    viability and pollen tube formation were disrupted in which unable the pollen to reach the ovule.
    At this stage, embryo was aborted towards formation of parthenocarpic fruits and rotten bunches.
    The study suggested that at low levels of irradiation i.e. < 200 Gy, generative nucleus partially
    damage and it is still maintaining capacity of fertilizing the egg cells for hybridization. It is
    important for breeders in understanding this finding towards novel variants of oil palm via
    mutation induction
    Matched MeSH terms: Gamma Rays
  17. Nurul Fadzlin Hasbullah, Nuurul Iffah Che Omar, Nahrul Khair Alang Md Rashid, Jaafar Abdullah
    MyJurnal
    Nuclear technology has found a great need for use in medicine, industry, and research. Smoke
    detectors in our homes, medical treatments and new varieties of plants by irradiating its seeds are just a few examples of the benefits of nuclear technology. Portable neutron source such as Californium-252, available at Industrial Technology Division (BTI/PAT), Malaysian Nuclear Agency, has a 2.645 year half-life. However, 252 Cf is known to emit gamma radiation from the source. Thus, this chamber aims to provide a proper gamma shielding for samples to distinguish the use of mixed neutron with gamma-rays or pure neutron radiation. The chamber is compatible to be used with other portable neutron sources such as 241 Am-Be as well as the reactor TRIGA PUSPATI for higher neutron dose. This chamber was designed through a collaborative effort of Kulliyyah Engineering, IIUM with the Bahagian Teknologi Industri (BTI) team, Agency Nuklear Malaysia.
    Matched MeSH terms: Gamma Rays
  18. Md Fakarudin Ab Rahman, M. Iqbal Saripan, Nor Pa’iza Mohamad Hasan, Ismail Mustapha
    MyJurnal
    The total mass attenuation coefficients (μ/ρ) of stainless steel (SS316L) and carbon steel (A516) that are widely used as petrochemical plant components, such as distillation column, heat exchanger, boiler and storage tank were measured at 662, 1073 and 1332 keV of photon energies. Measurements of radiation intensity for various thicknesses of steel were made by using transmission method. The γ-ray intensity were counted by using a Gamma spectrometer that contains a Hyper-pure Germanium (HPGe) detector connected with Multi Channel Analyzer (MCA). The effective numbers of atomic (Zeff) and electron (Neff) obtained experimentally were compared by those obtained through theoretical calculation. Both experimental and calculated values of Zeff and Neff were in good agreement.
    Matched MeSH terms: Gamma Rays
  19. Ahmad Taufek Abdul Rahman, Ahmad Termizi Ramli, Abd. Khalik Wood
    MyJurnal
    Environmental radiation protection program is important in the effort to limit radiation dose to the public to be as low as reasonably achievable. As water is an important factor of transfer of radionuclide to human, therefore it is important to measure natural radionuclide concentrations in rivers. 20 water samples were collected randomly from the main rivers in Kota Tinggi district. The water samples collected were analysed using ICP-MS technique to determine uranium, thorium and potassium concentration in river water. Radionuclide concentrations obtained were compared with the terrestrial gamma radiation dose rate measured in the area. Significance of the results obtained is discussed.
    Matched MeSH terms: Gamma Rays
  20. Azhar Mohamad
    MyJurnal
    The Gamma Green House (GGH) is a chronic irradiation facility located at MINT Tech Park, Nuclear Malaysia, Jalan Dengkil. GGH is used for induction of mutation in plants and other biological samples with low dose radiation over period of time depending on the nature and sensitivity of the plant species. Gamma Greenhouse facility at Malaysian Nuclear Agency comprises an open topped
    irradiation area consisting of circular green house with 30 meters radius, control room and irradiator with interlock system. The irradiation source is a REVISS RSL6050 double encapsulated 800 Ci 137Cs (half-life 30.1 years for 137Cs) pencils and allowed to be exposed only when the entire 300 m diameter site is free from personnel. The irradiator system is secured by a sophisticated interlock system, which only allows the source to be exposed when all the prerequisite safety conditions are met, and automatically returns the source to the safe
    storage position if any safety device is compromised.
    Matched MeSH terms: Gamma Rays
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links