METHODS: Firstly, color fundus images from the publicly available database DRIVE were converted from RGB to grayscale. To enhance the contrast of the dark objects (blood vessels) against the background, the dot product of the grayscale image with itself was generated. To rectify the variation in contrast, we used a 5 × 5 window filter on each pixel. Based on 5 regional features, 1 intensity feature and 2 Hessian features per scale using 9 scales, we extracted a total of 24 features. A linear minimum squared error (LMSE) classifier was trained to classify each pixel into a vessel or non-vessel pixel.
RESULTS: The DRIVE dataset provided 20 training and 20 test color fundus images. The proposed algorithm achieves a sensitivity of 72.05% with 94.79% accuracy.
CONCLUSIONS: Our proposed algorithm achieved higher accuracy (0.9206) at the peripapillary region, where the ocular manifestations in the microvasculature due to glaucoma, central retinal vein occlusion, etc. are most obvious. This supports the proposed algorithm as a strong candidate for automated vessel segmentation.
METHODS: The morphological features of the disc that is characteristic of glaucoma are clearly seen in the fundus images. However, manual inspection of the acquired fundus images may be prone to inter-observer variation. Therefore, a computer-aided detection (CAD) system is proposed to make an accurate, reliable and fast diagnosis of glaucoma based on the optic nerve features of fundus imaging. In this paper, we reviewed existing techniques to automatically diagnose glaucoma.
RESULTS: The use of CAD is very effective in the diagnosis of glaucoma and can assist the clinicians to alleviate their workload significantly. We have also discussed the advantages of employing state-of-art techniques, including deep learning (DL), when developing the automated system. The DL methods are effective in glaucoma diagnosis.
CONCLUSIONS: Novel DL algorithms with big data availability are required to develop a reliable CAD system. Such techniques can be employed to diagnose other eye diseases accurately.
DESIGN: Artificial intelligence (neural network) study.
METHODS: We assessed 1400 OCT scans of patients with neovascular AMD. Fifteen physical features for each eligible OCT, as well as patient age, were used as input data and corresponding recorded visual acuity as the target data to train, validate, and test a supervised neural network. We then applied this network to model the impact on acuity of defined OCT changes in subretinal fluid, subretinal hyperreflective material, and loss of external limiting membrane (ELM) integrity.
RESULTS: A total of 1210 eligible OCT scans were analyzed, resulting in 1210 data points, which were each 16-dimensional. A 10-layer feed-forward neural network with 1 hidden layer of 10 neurons was trained to predict acuity and demonstrated a root mean square error of 8.2 letters for predicted compared to actual visual acuity and a mean regression coefficient of 0.85. A virtual model using this network demonstrated the relationship of visual acuity to specific, programmed changes in OCT characteristics. When ELM is intact, there is a shallow decline in acuity with increasing subretinal fluid but a much steeper decline with equivalent increasing subretinal hyperreflective material. When ELM is not intact, all visual acuities are reduced. Increasing subretinal hyperreflective material or subretinal fluid in this circumstance reduces vision further still, but with a smaller gradient than when ELM is intact.
CONCLUSIONS: The supervised machine learning neural network developed is able to generate an estimated visual acuity value from OCT images in a population of patients with AMD. These findings should be of clinical and research interest in macular degeneration, for example in estimating visual prognosis or highlighting the importance of developing treatments targeting more visually destructive pathologies.
PURPOSE: To report a case of AMN post-COVID-19 infection.
CASE REPORT: A 24-year-old Indian woman presented with acute-onset painless bilateral central scotoma for a day. The symptom was preceded by a history of COVID-19 infection 3 weeks prior. Ocular examination revealed a near-normal visual acuity for both eyes. Fundus examination showed bilateral dull foveal reflex with mild scattered cotton wool spot and vascular tortuosity. Optical coherence tomography macula revealed a distinct short hyperreflective band involving the outer plexiform and outer nuclear layers nasal to the fovea. The Bjerrum perimetry test revealed central scotoma temporal to the fixation. Optical coherence tomography lesions and scotomas are identical and congruous in both eyes. Serial fundus photographs are captured showing the evolving changes of near-normal macula to pigmented wedge-shaped petaloid lesions around the fovea. The patient was diagnosed as bilateral AMN and treated with oral prednisolone. On subsequent follow-up, the central scotoma improved.
CONCLUSIONS: This case illustrates a clear temporal and possible causal relationship of COVID-19 infection with AMN. Further studies and data are required to justify its association, but the rising cases of AMN shall be anticipated as COVID-19 infections have become endemic worldwide.