Displaying publications 41 - 60 of 63 in total

Abstract:
Sort:
  1. Aaiza G, Khan I, Shafie S
    Nanoscale Res Lett, 2015 Dec;10(1):490.
    PMID: 26698873 DOI: 10.1186/s11671-015-1144-4
    Energy transfer in mixed convection unsteady magnetohydrodynamic (MHD) flow of an incompressible nanofluid inside a channel filled with saturated porous medium is investigated. The channel with non-uniform walls temperature is taken in a vertical direction under the influence of a transverse magnetic field. Based on the physical boundary conditions, three different flow situations are discussed. The problem is modelled in terms of partial differential equations with physical boundary conditions. Four different shapes of nanoparticles of equal volume fraction are used in conventional base fluids, ethylene glycol (EG) (C 2 H 6 O 2 ) and water (H 2 O). Solutions for velocity and temperature are obtained discussed graphically in various plots. It is found that viscosity and thermal conductivity are the most prominent parameters responsible for different results of velocity and temperature. Due to higher viscosity and thermal conductivity, C 2 H 6 O 2 is regarded as better convectional base fluid compared to H 2 O.
    Matched MeSH terms: Convection
  2. Uddin MJ, Khan WA, Amin NS
    PLoS One, 2014;9(6):e99384.
    PMID: 24927277 DOI: 10.1371/journal.pone.0099384
    The unsteady two-dimensional laminar g-Jitter mixed convective boundary layer flow of Cu-water and Al2O3-water nanofluids past a permeable stretching sheet in a Darcian porous is studied by using an implicit finite difference numerical method with quasi-linearization technique. It is assumed that the plate is subjected to velocity and thermal slip boundary conditions. We have considered temperature dependent viscosity. The governing boundary layer equations are converted into non-similar equations using suitable transformations, before being solved numerically. The transport equations have been shown to be controlled by a number of parameters including viscosity parameter, Darcy number, nanoparticle volume fraction, Prandtl number, velocity slip, thermal slip, suction/injection and mixed convection parameters. The dimensionless velocity and temperature profiles as well as friction factor and heat transfer rates are presented graphically and discussed. It is found that the velocity reduces with velocity slip parameter for both nanofluids for fluid with both constant and variable properties. It is further found that the skin friction decreases with both Darcy number and momentum slip parameter while it increases with viscosity variation parameter. The surface temperature increases as the dimensionless time increases for both nanofluids. Nusselt numbers increase with mixed convection parameter and Darcy numbers and decreases with the momentum slip. Excellent agreement is found between the numerical results of the present paper with published results.
    Matched MeSH terms: Convection
  3. Ali F, Khan I, Samiulhaq, Shafie S
    PLoS One, 2013;8(6):e65223.
    PMID: 23840321 DOI: 10.1371/journal.pone.0065223
    The aim of this study is to present an exact analysis of combined effects of radiation and chemical reaction on the magnetohydrodynamic (MHD) free convection flow of an electrically conducting incompressible viscous fluid over an inclined plate embedded in a porous medium. The impulsively started plate with variable temperature and mass diffusion is considered. The dimensionless momentum equation coupled with the energy and mass diffusion equations are analytically solved using the Laplace transform method. Expressions for velocity, temperature and concentration fields are obtained. They satisfy all imposed initial and boundary conditions and can be reduced, as special cases, to some known solutions from the literature. Expressions for skin friction, Nusselt number and Sherwood number are also obtained. Finally, the effects of pertinent parameters on velocity, temperature and concentration profiles are graphically displayed whereas the variations in skin friction, Nusselt number and Sherwood number are shown through tables.
    Matched MeSH terms: Convection
  4. Sidik NA, Khakbaz M, Jahanshaloo L, Samion S, Darus AN
    Nanoscale Res Lett, 2013;8(1):178.
    PMID: 23594696 DOI: 10.1186/1556-276X-8-178
    This paper presents a numerical study of the thermal performance of fins mounted on the bottom wall of a horizontal channel and cooled with either pure water or an Al2O3-water nanofluid. The bottom wall of the channel is heated at a constant temperature and cooled by mixed convection of laminar flow at a relatively low temperature. The results of the numerical simulation indicate that the heat transfer rate of fins is significantly affected by the Reynolds number (Re) and the thermal conductivity of the fins. The influence of the solid volume fraction on the increase of heat transfer is more noticeable at higher values of the Re.
    Matched MeSH terms: Convection
  5. Baker AK, Sauvage C, Thorenz UR, van Velthoven P, Oram DE, Zahn A, et al.
    Sci Rep, 2016 11 15;6:36821.
    PMID: 27845366 DOI: 10.1038/srep36821
    The chlorine radical is a potent atmospheric oxidant, capable of perturbing tropospheric oxidative cycles normally controlled by the hydroxyl radical. Significantly faster reaction rates allow chlorine radicals to expedite oxidation of hydrocarbons, including methane, and in polluted environments, to enhance ozone production. Here we present evidence, from the CARIBIC airborne dataset, for extensive chlorine radical chemistry associated with Asian pollution outflow, from airborne observations made over the Malaysian Peninsula in winter. This region is known for persistent convection that regularly delivers surface air to higher altitudes and serves as a major transport pathway into the stratosphere. Oxidant ratios inferred from hydrocarbon relationships show that chlorine radicals were regionally more important than hydroxyl radicals for alkane oxidation and were also important for methane and alkene oxidation (>10%). Our observations reveal pollution-related chlorine chemistry that is both widespread and recurrent, and has implications for tropospheric oxidizing capacity, stratospheric composition and ozone chemistry.
    Matched MeSH terms: Convection
  6. Ishamri Ismail, Nur Husna Mohd Fauzi, Mastura Zahidi Baki, Ho, Lee Hoon
    MyJurnal
    This study was carried out to evaluate the effects of different drying methods (sun drying, cabinet
    drying and convection oven) and hydrocolloids (carrageenan and alginate) on physicochemical
    properties of semi-dried catfish jerky. The concentration of hydrocolloids used was 1% and 2%.
    Samples without the addition of hydrocolloid served as the control group. The water activity of semidried catfish jerky decreased with the addition of hydrocolloids. For colour properties, lightness (L*)
    value of semi-dried catfish jerky increased with the increased concentration of hydrocolloids. The
    addition of 2% alginate (2%A) and 2% carrageenan (2%C) showed higher lightness (L*) than the
    controlled group for all drying methods, except for sun drying with carrageenan. Both carrageenan and
    alginate added into semi-dried catfish jerky increased the processing yields. The addition of 2%
    carrageenan (2%C) and 1% alginate (1%A) improved the product yields for all drying methods. This
    paper argues that the application of cabinet dryer gives better shelf stability due to the lower range of
    water activity than other drying methods while preserving colour quality and product yields.
    Matched MeSH terms: Convection
  7. Alsabery AI, Ishak MS, Chamkha AJ, Hashim I
    Entropy (Basel), 2018 May 03;20(5).
    PMID: 33265426 DOI: 10.3390/e20050336
    The problem of entropy generation analysis and natural convection in a nanofluid square cavity with a concentric solid insert and different temperature distributions is studied numerically by the finite difference method. An isothermal heater is placed on the bottom wall while isothermal cold sources are distributed along the top and side walls of the square cavity. The remainder of these walls are kept adiabatic. Water-based nanofluids with Al 2 O 3 nanoparticles are chosen for the investigation. The governing dimensionless parameters of this study are the nanoparticles volume fraction ( 0 ≤ ϕ ≤ 0.09 ), Rayleigh number ( 10 3 ≤ R a ≤ 10 6 ) , thermal conductivity ratio ( 0.44 ≤ K r ≤ 23.8 ) and length of the inner solid ( 0 ≤ D ≤ 0.7 ). Comparisons with previously experimental and numerical published works verify a very good agreement with the proposed numerical method. Numerical results are presented graphically in the form of streamlines, isotherms and local entropy generation as well as the local and average Nusselt numbers. The obtained results indicate that the thermal conductivity ratio and the inner solid size are excellent control parameters for an optimization of heat transfer and Bejan number within the fully heated and partially cooled square cavity.
    Matched MeSH terms: Convection
  8. Fasihah Zulkiflee, Ahmad Qushairi Mohamad, Sharidan Shafie, Arshad Khan
    MATEMATIKA, 2019;35(2):117-127.
    MyJurnal
    Free convection flow in a boundary layer region is a motion that results from the interaction of gravity with density differences within a fluid. These differences occur due to temperature or concentration gradients or due to their composition. Studies per- taining free convection flows of incompressible viscous fluids have received much attention in recent years both theoretically (exact or approximate solutions) and experimentally. The situation where the heat be transported to the convective fluid via a bounding sur- face having finite heat capacity is known as Newtonian heating (or conjugate convective flows). In this paper, the unsteady free convection flow of an incompressible viscous fluid between two parallel plates with Newtonian heating is studied. Appropriate non- dimensional variables are used to reduce the dimensional governing equations along with imposed initial and boundary conditions into dimensionless forms. The exact solutions for velocity and temperature are obtained using the Laplace transform technique. The corresponding expressions for skin friction and Nusselt number are also calculated. The graphical results are displayed to illustrate the influence of various embedded parameters such as Newtonian heating parameter and Grashof number. The results show that the effect of Newtonian heating parameter increases the Nusselt number but reduces the skin friction.
    Matched MeSH terms: Convection
  9. Ghalambaz M, Mehryan SAM, Hajjar A, Shdaifat MYA, Younis O, Talebizadehsardari P, et al.
    Molecules, 2021 Mar 09;26(5).
    PMID: 33803488 DOI: 10.3390/molecules26051496
    A wavy shape was used to enhance the thermal heat transfer in a shell-tube latent heat thermal energy storage (LHTES) unit. The thermal storage unit was filled with CuO-coconut oil nano-enhanced phase change material (NePCM). The enthalpy-porosity approach was employed to model the phase change heat transfer in the presence of natural convection effects in the molten NePCM. The finite element method was applied to integrate the governing equations for fluid motion and phase change heat transfer. The impact of wave amplitude and wave number of the heated tube, as well as the volume concertation of nanoparticles on the full-charging time of the LHTES unit, was addressed. The Taguchi optimization method was used to find an optimum design of the LHTES unit. The results showed that an increase in the volume fraction of nanoparticles reduces the charging time. Moreover, the waviness of the tube resists the natural convection flow circulation in the phase change domain and could increase the charging time.
    Matched MeSH terms: Convection
  10. Momani, M.A., Yatim, B., Ali, M.A.M., Abdullah, M.
    ASM Science Journal, 2009;3(2):121-130.
    MyJurnal
    The paper examines the propagation direction and speed of large scale travelling ionospheric disturbances (LSTIDs) obtained from GPS observations of extreme geomagnetic storms during the 23rd solar cycle; these are the October 2003 and November 2003 geomagnetic storms. In the analysis, the time delay between total electron content (TEC) structures at Scott Base station (SBA) (Lat. –77.85º, Long. 166.76º), McMurdo (McM4), (Lat. –77.84º, Long. 166.95º), Davis (DAV1), (Lat. –68.58º, Long. 77.97º) and Casey station (CAS1) (Lat. –66.28º, Long. 110.52º) GPS stations as well as the distance between these stations were employed in the analysis. The measurements during the October 2003 storm showed obvious time delay between the TEC enhancement occurrences at SBA/MCM4, DAV1 and CAS1 stations. The time delay indicated a movement of the ionospheric structures from higher to lower latitudes in a velocity ranging between 0.8 km/s – 1.2 km/s. The first sudden TEC enhancement was observed at SBA/McM4 (Lat. –75.84º) followed by CAS1 station (Lat. –66.28º) and the final TEC enhancement was seen at DAV1 station (Lat. –68.58º) with TEC magnitude decreasing while moving from higher to lower latitudes. One important observation was that although the latitude of the CAS1 station was lower than the DAV1 station, the TEC enhancement was firstly seen at the CAS1 station due to the shorter distance between SBA and CAS1 compared with the distance between SBA and CAS1 of about 500 km. The TEC measurements during the November 2003 storm showed an opposite propagation direction (i.e. poleward direction from lower to higher latitudes) which was seen with a velocity ranging between 0.3 km/s – 0.4 km/s. As similar response was observed using vertical TEC measurements obtained from individual PRN satellites but with higher velocity ranges (1.2 km/s – 2.4 km/s during October
    and 0.5 km/s – 0.7 km/s during November). The equatorward or poleward expansion of LSTIDs during the October and November 2003 storms was probably caused by the disturbances in the neutral temperature which occurred close to the dayside convection throat or due to the neutral wind oscillation induced by atmospheric gravity waves launched from the aurora region.
    Matched MeSH terms: Convection
  11. Alsabery AI, Sheremet MA, Chamkha AJ, Hashim I
    Sci Rep, 2018 May 09;8(1):7410.
    PMID: 29743641 DOI: 10.1038/s41598-018-25749-2
    The problem of steady, laminar natural convection in a discretely heated and cooled square cavity filled by an alumina/water nanofluid with a centered heat-conducting solid block under the effects of inclined uniform magnetic field, Brownian diffusion and thermophoresis is studied numerically by using the finite difference method. Isothermal heaters and coolers are placed along the vertical walls and the bottom horizontal wall, while the upper horizontal wall is kept adiabatic. Water-based nanofluids with alumina nanoparticles are chosen for investigation. The governing parameters of this study are the Rayleigh number (103 ≤ Ra ≤ 106), the Hartmann number (0 ≤ Ha ≤ 50), thermal conductivity ratio (0.28 ≤ k w  ≤ 16), centered solid block size (0.1 ≤ D ≤ 0.7) and the nanoparticles volume fraction (0 ≤ ϕ ≤ 0.04). The developed computational code is validated comprehensively using the grid independency test and numerical and experimental data of other authors. The obtained results reveal that the effects of the thermal conductivity ratio, centered solid block size and the nanoparticles volume fraction are non-linear for the heat transfer rate. Therefore, it is possible to find optimal parameters for the heat transfer enhancement in dependence on the considered system. Moreover, high values of the Rayleigh number and nanoparticles volume fraction characterize homogeneous distributions of nanoparticles inside the cavity. High concentration of nanoparticles can be found near the centered solid block where thermal plumes from the local heaters interact.
    Matched MeSH terms: Convection
  12. Aman S, Khan I, Ismail Z, Salleh MZ, Al-Mdallal QM
    Sci Rep, 2017 05 26;7(1):2445.
    PMID: 28550289 DOI: 10.1038/s41598-017-01358-3
    This article investigates heat transfer enhancement in free convection flow of Maxwell nanofluids with carbon nanotubes (CNTs) over a vertically static plate with constant wall temperature. Two kinds of CNTs i.e. single walls carbon nanotubes (SWCNTs) and multiple walls carbon nanotubes (MWCNTs) are suspended in four different types of base liquids (Kerosene oil, Engine oil, water and ethylene glycol). Kerosene oil-based nanofluids are given a special consideration due to their higher thermal conductivities, unique properties and applications. The problem is modelled in terms of PDE's with initial and boundary conditions. Some relevant non-dimensional variables are inserted in order to transmute the governing problem into dimensionless form. The resulting problem is solved via Laplace transform technique and exact solutions for velocity, shear stress and temperature are acquired. These solutions are significantly controlled by the variations of parameters including the relaxation time, Prandtl number, Grashof number and nanoparticles volume fraction. Velocity and temperature increases with elevation in Grashof number while Shear stress minimizes with increasing Maxwell parameter. A comparison between SWCNTs and MWCNTs in each case is made. Moreover, a graph showing the comparison amongst four different types of nanofluids for both CNTs is also plotted.
    Matched MeSH terms: Convection
  13. Hayat T, Abbasi F, Ahmad B, Alsaedi A
    Sains Malaysiana, 2014;43:1583-1590.
    This article concerns with a mixed convection peristaltic flow of an electrically conducting fluid in an inclined asymmetric channel. Analysis has been carried out in the presence of Joule heating. The fluid viscosity and thermal conductivity are assumed to vary as a linear function of temperature. A nonlinear coupled governing system is computed. Numerical results were presented for the velocity, pressure gradient, temperature and streamlines. Heat transfer rate at the wall is computed and analyzed. Graphs reflecting the contributions of embedded parameters were discussed.
    Matched MeSH terms: Convection
  14. Sheikholeslami M, Shah Z, Shafee A, Khan I, Tlili I
    Sci Rep, 2019 02 04;9(1):1196.
    PMID: 30718893 DOI: 10.1038/s41598-018-37964-y
    In the present research, aluminum oxide- water (Al2O3-H2O) nanofluid free convection due to magnetic forces through a permeable cubic domain with ellipse shaped obstacle has been reported. Lattice Boltzmann approach is involved to depict the impacts of magnetic, buoyancy forces and permeability on nanoparticles migration. To predict properties of Al2O3- water nanofluid, Brownian motion impact has been involved. Outcomes revels that considering higher magnetic forces results in greater conduction mechanism. Permeability can enhance the temperature gradient.
    Matched MeSH terms: Convection
  15. Md. Faisal Md. Basir, Uddin M, Md. Ismail A
    Sains Malaysiana, 2017;46:327-333.
    Induced magnetic field stagnation point flow for unsteady two-dimensional laminar forced convection of water based nanofluid containing microorganisms along a vertical plate has been investigated. We have incorporated zero mass flux boundary condition to get physically realistic results. The boundary layer equations with three independent variables are transformed into a system of ordinary differential equations by using appropriate similarity transformations. The derived equations are then solved numerically by using Maple which use the fourth-fifth order Runge-Kutta-Fehlberg algorithm to solve the system of similarity differential equations. The effects of the governing parameters on the dimensionless velocity, induced magnetic field, temperature, nanoparticle volume fraction, density of motile microorganisms, skin friction coefficient, local Nusselt number and motile density of microorganisms transfer rate are illustrated graphically and tabular form. It is found that the controlling parameters strongly affect the fluid flow and heat transfer characteristics. We compare our numerical results with published results for some limiting cases and found excellent agreement.
    Matched MeSH terms: Convection
  16. Rahimah Mahat, Noraihan Afiqah Rawi, Sharidan Shafie, Abdul Rahman Mohd Kasim
    Sains Malaysiana, 2018;47:1617-1623.
    The purpose of this study was to examine the effect of viscous dissipation on mixed convection flow of viscoelastic
    nanofluid past a horizontal circular cylinder. Carboxymethyl cellulose solution (CMC) is chosen as the base fluid and
    copper as a nanoparticle with the Prandtl number Pr = 6.2. The transformed boundary layer equations for momentum
    and temperature subject to the appropriate boundary conditions are solved numerically by using Keller-box method. The
    influenced of the dimensionless parameters such as Eckert number, mixed convection parameter, nanoparticles volume
    fraction and viscoelastic parameter on the flow and heat transfer characteristics is analyzed in detail and presented
    graphically. The results come out with the velocity profiles are increased while the temperature profiles are decreased
    by increasing the values of nanoparticles volume fraction and viscoelastic parameter, respectively. The graph shows
    that, increasing Eckert number the skin friction is also increases. The values of skin friction are increased by increasing
    mixed convection parameter, but the values of Nusselt number produce an opposite behavior. The present study has many
    applications especially in heat exchangers technology and oceanography. Therefore, in future, it is hoping to study the
    viscoelastic nanofluid flow past a different geometric such as sphere and cylindrical cone.
    Matched MeSH terms: Convection
  17. Gul A, Khan I, Shafie S, Khalid A, Khan A
    PLoS One, 2015;10(11):e0141213.
    PMID: 26550837 DOI: 10.1371/journal.pone.0141213
    This study investigated heat transfer in magnetohydrodynamic (MHD) mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4) was selected as a conventional base fluid. In addition, non-magnetic (Al2O3) aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work.
    Matched MeSH terms: Convection
  18. Aman S, Khan I, Ismail Z, Salleh MZ
    Neural Comput Appl, 2018;30(3):789-797.
    PMID: 30100679 DOI: 10.1007/s00521-016-2688-7
    Impacts of gold nanoparticles on MHD Poiseuille flow of nanofluid in a porous medium are studied. Mixed convection is induced due to external pressure gradient and buoyancy force. Additional effects of thermal radiation, chemical reaction and thermal diffusion are also considered. Gold nanoparticles of cylindrical shape are considered in kerosene oil taken as conventional base fluid. However, for comparison, four other types of nanoparticles (silver, copper, alumina and magnetite) are also considered. The problem is modeled in terms of partial differential equations with suitable boundary conditions and then computed by perturbation technique. Exact expressions for velocity and temperature are obtained. Graphical results are mapped in order to tackle the physics of the embedded parameters. This study mainly focuses on gold nanoparticles; however, for the sake of comparison, four other types of nanoparticles namely silver, copper, alumina and magnetite are analyzed for the heat transfer rate. The obtained results show that metals have higher rate of heat transfer than metal oxides. Gold nanoparticles have the highest rate of heat transfer followed by alumina and magnetite. Porosity and magnetic field have opposite effects on velocity.
    Matched MeSH terms: Convection
  19. Au Jee Yuan, Faridah Yahya
    MyJurnal
    The aim of this study was to determine the effect of different ratios of low protein flour to oyster mushroom (Pleurotus sajor-caju) powder on the physicochemical properties and sensory acceptability of edible tablespoon. Fresh grey oyster mushroom was dried in a convection oven at temperature of 55.0˚C ± 2.0˚C for 20 h prior to the grinding process. The low protein flour (LPF) was then incorporated with oyster mushroom powder (OMP) at different ratios of 100:0, 96:4, 92:8, 88:12 and 84:16, before being with vegetable oil, sugar, egg white and water in formulating the edible tablespoon. The proximate analyses were carried out in triplicate for calorie content, colour profile, hardness value and morphological structure of edible tablespoon. This study revealed that with decreasing LPF and increasing OMP in the formulation, the ash content (1.24% to 1.92%), crude fat content (8.98% to 10.40%) and fiber content (0.13% to 1.24%) were observed to have increased as well as the hardness value (2042.03g to 2844.57g) and pore’s size of the morphological structure of edible tablespoon. However, the carbohydrate content (78.64% to 75.56%) significantly decreased (p>0.05) together with L* value (from 68.47 to 61.71) when the decrease was in the the percentage of LPF and an increase the percentage of OMP. The calorie content, moisture content and protein content of edible tablespoon were not significantly (p>0.05) affected by different ratios of LPF to OMP. The edible tablespoon formulated with up to 8% of OMP was accepted by the sensory panelists but further increase in OMP addition significantly decreased the degree of likeness in terms of colour, odour, taste and overall acceptability of edible tablespoon. This study suggested that oyster mushroom edible tablespoon could be potential alternative disposable cutlery which will help to reduce the use of huge amount of non-biodegradable materials for environmental conservation.
    Matched MeSH terms: Convection
  20. Kandasamy, R., Azme, Hashim, I., Ismoen, M.
    ASM Science Journal, 2008;2(1):23-33.
    MyJurnal
    The effect of chemical reaction and variable viscosity on mixed convection heat and mass transfer for Hiemenz flow over a porous wedge plate was studied in the presence of heat radiation. The wall of the wedge was embedded in a uniform Darcian porous medium to allow for possible fluid wall suction or injection and had a power-law variation of both the wall temperature and concentration. The fluid was assumed to be viscous and incompressible. Numerical calculations were carried out for different values of dimensionless parameters and an analysis of the results obtained showed that the flow field was influenced appreciably by the buoyancy ratio between species, thermal diffusion and suction/injection at wall surface. The effects of these major parameters on the transport behaviours were investigated methodically and typical results illustrated to reveal the tendency of the solutions. Representative results are presented for the velocity, temperature, and concentration distributions. Comparisons with previously published works were performed and excellent agreement between the results were obtained. It is predicted that this research might prove to be useful for study of the movement of oil or gas and water through the reservoir of an oil or gas field, in the migration of underground water, in filtration, and water purification processes.
    Matched MeSH terms: Convection
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links