Displaying publications 41 - 60 of 232 in total

Abstract:
Sort:
  1. Flaherty G, Moran B, Higgins P
    J Travel Med, 2017 05 01;24(3).
    PMID: 28881861 DOI: 10.1093/jtm/tax004
    Matched MeSH terms: Communicable Diseases, Emerging/transmission*
  2. Nosheen F, Malik N, Mehmood Z, Jabeen F, Mahmood A, Ibrahim M, et al.
    Environ Res, 2022 Dec;215(Pt 2):114240.
    PMID: 36103930 DOI: 10.1016/j.envres.2022.114240
    Biomedical waste from healthcare activities poses a higher hazard of infection and damage than other types of trash. The main objective of the study was to assess the awareness knowledge and practices of biomedical waste management (BMWM) among health care professionals in the health care units. The cross-sectional study was carried out to access the awareness, knowledge and practices of health care professionals for BMWM. Using a qualitative approach, the study was escorted in two Apex hospitals i.e. the Allied Hospital and the District Head Quarter Hospital, Faisalabad, Pakistan from August 5, 2019 to October 15, 2019. More than 90% of respondents knew the phrase BMWM, but just 35.4% had awareness about biomedical waste regulations. About 71.6% of the respondents were familiar with biomedical waste's color-coding segregation. The study concludes gap in the awareness, knowledge and practices for BMWM. The sanitary workers of the hospitals had no knowledge about BMWM and the BMWM/healthcare waste management rule 2005 established in Pakistan due to the lack of training regarding waste management and the segregation process. Some of the staff members were aware of the BMWM practices under the rules and regulations of Pakistan but were unable to implement at their work place. It is necessary to dispose of the biomedical waste according to the established terms and conditions of BMWM rules (2005) of Pakistan. Weak structure of BMWM was observed at the study sites due to the lack of training, liabilities and absence of penalties against improper biomedical waste disposal as violation of the rules and regulations. It's a dire need of the time to consider the biomedical waste as hazardous waste and make policies for its safe disposal and ensure the implementation of the policies in all the medical centers of Pakistan.
    Matched MeSH terms: Communicable Diseases*
  3. Chan YL, Patterson CL, Priest JW, Stresman G, William T, Chua TH, et al.
    Front Public Health, 2022;10:924316.
    PMID: 36388287 DOI: 10.3389/fpubh.2022.924316
    BACKGROUND: Infectious diseases continue to burden populations in Malaysia, especially among rural communities where resources are limited and access to health care is difficult. Current epidemiological trends of several neglected tropical diseases in these populations are at present absent due to the lack of habitual and efficient surveillance. To date, various studies have explored the utility of serological multiplex beads to monitor numerous diseases simultaneously. We therefore applied this platform to assess population level exposure to six infectious diseases in Sabah, Malaysia. Furthermore, we concurrently investigated demographic and spatial risk factors that may be associated with exposure for each disease.

    METHODS: This study was conducted in four districts of Northern Sabah in Malaysian Borneo, using an environmentally stratified, population-based cross-sectional serological survey targeted to determine risk factors for malaria. Samples were collected between September to December 2015, from 919 villages totaling 10,100 persons. IgG responses to twelve antigens of six diseases (lymphatic filariasis- Bm33, Bm14, BmR1, Wb123; strongyloides- NIE; toxoplasmosis-SAG2A; yaws- Rp17 and TmpA; trachoma- Pgp3, Ct694; and giardiasis- VSP3, VSP5) were measured using serological multiplex bead assays. Eight demographic risk factors and twelve environmental covariates were included in this study to better understand transmission in this community.

    RESULTS: Seroprevalence of LF antigens included Bm33 (10.9%), Bm14+ BmR1 (3.5%), and Wb123 (1.7%). Seroprevalence of Strongyloides antigen NIE was 16.8%, for Toxoplasma antigen SAG2A was 29.9%, and Giardia antigens GVSP3 + GVSP5 was 23.2%. Seroprevalence estimates for yaws Rp17 was 4.91%, for TmpA was 4.81%, and for combined seropositivity to both antigens was 1.2%. Seroprevalence estimates for trachoma Pgp3 + Ct694 were 4.5%. Age was a significant risk factors consistent among all antigens assessed, while other risk factors varied among the different antigens. Spatial heterogeneity of seroprevalence was observed more prominently in lymphatic filariasis and toxoplasmosis.

    CONCLUSIONS: Multiplex bead assays can be used to assess serological responses to numerous pathogens simultaneously to support infectious disease surveillance in rural communities, especially where prevalences estimates are lacking for neglected tropical diseases. Demographic and spatial data collected alongside serosurveys can prove useful in identifying risk factors associated with exposure and geographic distribution of transmission.

    Matched MeSH terms: Communicable Diseases*
  4. Ramanathan S, Gopinath SCB, Ismail ZH, Md Arshad MK, Poopalan P
    Biosens Bioelectron, 2022 Feb 01;197:113735.
    PMID: 34736114 DOI: 10.1016/j.bios.2021.113735
    In an aim of developing portable biosensor for SARS-CoV-2 pandemic, which facilitates the point-of-care aptasensing, a strategy using 10 μm gap-sized gold interdigitated electrode (AuIDE) is presented. The silane-modified AuIDE surface was deposited with ∼20 nm diamond and enhanced the detection of SARS-CoV-2 nucleocapsid protein (NCP). The characteristics of chemically modified diamond were evidenced by structural analyses, revealing the cubic crystalline nature at (220) and (111) planes as observed by XRD. XPS analysis denotes a strong interaction of carbon element, composed ∼95% as seen in EDS analysis. The C-C, CC, CO, CN functional groups were well-refuted from XPS spectra of carbon and oxygen elements in diamond. The interrelation between elements through FTIR analysis indicates major intrinsic bondings at 2687-2031 cm-1. The aptasensing was evaluated through electrochemical impedance spectroscopy measurements, using NCP spiked human serum. With a good selectivity the lower detection limit was evidenced as 0.389 fM, at a linear detection range from 1 fM to 100 pM. The stability, and reusability of the aptasensor were demonstrated, showing ∼30% and ∼33% loss of active state, respectively, after ∼11 days. The detection of NCP was evaluated by comparing anti-NCP aptamer and antibody as the bioprobes. The determination coefficients of R2 = 0.9759 and R2 = 0.9772 were obtained for aptamer- and antibody-based sensing, respectively. Moreover, the genuine interaction of NCP aptamer and protein was validated by enzyme linked apta-sorbent assay. The aptasensing strategy proposed with AuIDE/diamond enhanced sensing platform is highly recommended for early diagnosis of SARS-CoV-2 infection.
    Matched MeSH terms: Communicable Diseases*
  5. Wang W, Zhao X, Jia Y, Xu J
    PLoS One, 2024;19(2):e0297578.
    PMID: 38319912 DOI: 10.1371/journal.pone.0297578
    The objectives are to improve the diagnostic efficiency and accuracy of epidemic pulmonary infectious diseases and to study the application of artificial intelligence (AI) in pulmonary infectious disease diagnosis and public health management. The computer tomography (CT) images of 200 patients with pulmonary infectious disease are collected and input into the AI-assisted diagnosis software based on the deep learning (DL) model, "UAI, pulmonary infectious disease intelligent auxiliary analysis system", for lesion detection. By analyzing the principles of convolutional neural networks (CNN) in deep learning (DL), the study selects the AlexNet model for the recognition and classification of pulmonary infection CT images. The software automatically detects the pneumonia lesions, marks them in batches, and calculates the lesion volume. The result shows that the CT manifestations of the patients are mainly involved in multiple lobes and density, the most common shadow is the ground-glass opacity. The detection rate of the manual method is 95.30%, the misdetection rate is 0.20% and missed diagnosis rate is 4.50%; the detection rate of the DL-based AI-assisted lesion method is 99.76%, the misdetection rate is 0.08%, and the missed diagnosis rate is 0.08%. Therefore, the proposed model can effectively identify pulmonary infectious disease lesions and provide relevant data information to objectively diagnose pulmonary infectious disease and manage public health.
    Matched MeSH terms: Communicable Diseases*
  6. Iskandar K, Molinier L, Hallit S, Sartelli M, Hardcastle TC, Haque M, et al.
    Antimicrob Resist Infect Control, 2021 03 31;10(1):63.
    PMID: 33789754 DOI: 10.1186/s13756-021-00931-w
    Data on comprehensive population-based surveillance of antimicrobial resistance is lacking. In low- and middle-income countries, the challenges are high due to weak laboratory capacity, poor health systems governance, lack of health information systems, and limited resources. Developing countries struggle with political and social dilemma, and bear a high health and economic burden of communicable diseases. Available data are fragmented and lack representativeness which limits their use to advice health policy makers and orientate the efficient allocation of funding and financial resources on programs to mitigate resistance. Low-quality data means soaring rates of antimicrobial resistance and the inability to track and map the spread of resistance, detect early outbreaks, and set national health policy to tackle resistance. Here, we review the barriers and limitations of conducting effective antimicrobial resistance surveillance, and we highlight multiple incremental approaches that may offer opportunities to strengthen population-based surveillance if tailored to the context of each country.
    Matched MeSH terms: Communicable Diseases/epidemiology
  7. Isahak I, Steering Committee for Prevention and Control of Infectious Diseases in Asia
    PMID: 11023089
    Adult immunization is a neglected and underpublicised issue in Southeast Asia. Vaccine-preventable diseases cause unnecessary morbidity and mortality among adults in the region, while inadequate immunization results in unnecessary costs, including those associated with hospitalization, treatment, and loss of income. Childhood vaccination coverage is high for the EPI diseases of diphtheria, tetanus and pertussis; however, unvaccinated, undervaccinated, and aging adults with waning immunity remain at risk from infection and may benefit from vaccination. Catch-up immunization is advisable for adults seronegative for hepatitis B virus, while immunization against the hepatitis A and varicella viruses may benefit those who remain susceptible. Among older adults, immunization against influenza and pneumococcal infections is likely to be beneficial in reducing morbidity and mortality. Certain vaccinations are also recommended for specific groups, such as rubella for women of child-bearing age, typhoid for those travelling to high-endemicity areas, and several vaccines for high-risk occupational groups such as health care workers. This paper presents an overview of a number of vaccine-preventable diseases which occur in adults, and highlights the importance of immunization to protect those at risk of infection.
    Matched MeSH terms: Communicable Diseases/epidemiology
  8. Allotey P, Reidpath DD, Pokhrel S
    Health Res Policy Syst, 2010 Oct 21;8:32.
    PMID: 20961461 DOI: 10.1186/1478-4505-8-32
    Centuries of scientific advances and developments in biomedical sciences have brought us a long way to understanding and managing disease processes, by reducing them to simplified cause-effect models. For most of the infectious diseases known today, we have the methods and technology to identify the causative agent, understand the mechanism by which pathology is induced and develop the treatment (drugs, vaccines, medical or surgical procedures) to cure, manage or control.Disease, however, occurs within a context of lives fraught with complexity. For any given infectious disease, who gets it, when, why, the duration, the severity, the outcome, the sequelae, are bound by a complex interplay of factors related as much to the individual as it is to the physical, social, cultural, political and economic environments. Furthermore each of these factors is in a dynamic state of change, evolving over time as they interact with each other. Simple solutions to infectious diseases are therefore rarely sustainable solutions. Sustainability would require the development of interdisciplinary sciences that allow us to acknowledge, understand and address these complexities as they occur, rather than rely solely on a form of science based on reducing the management of disease to simple paradigms.In this review we examine the current global health responses to the 'neglected' tropical diseases, which have been prioritised on the basis of an acknowledgment of the complexity of the poverty-disease cycle. However research and interventions for neglected tropical diseases, largely neglect the social and ecological contextual, factors that make these diseases persist in the target populations, continuing instead to focus on the simple biomedical interventions. We highlight the gaps in the approaches and explore the potential of enhanced interdisciplinary work in the development of long term solutions to disease control.
    Matched MeSH terms: Communicable Diseases
  9. Mackenzie JS, Williams DT
    Zoonoses Public Health, 2009 Aug;56(6-7):338-56.
    PMID: 19486319 DOI: 10.1111/j.1863-2378.2008.01208.x
    The genus Flaviviridae comprises about 70 members, of which about 30 are found in southern, south-eastern and eastern Asia and Australasia. These include major pathogens such as Japanese encephalitis (JE), West Nile (WN), Murray Valley encephalitis (MVE), tick-borne encephalitis, Kyasanur Forest disease virus, and the dengue viruses. Other members are known to be associated with mild febrile disease in humans, or with no known disease. In addition, novel flaviviruses continue to be discovered, as demonstrated recently by New Mapoon virus in Australia, Sitiawan virus in Malaysia, and ThCAr virus in Thailand. About 19 of these viruses are mosquito-borne, six are tick-borne, and four have no known vector and represent isolates from rodents or bats. Evidence from phylogenetic studies suggest that JE, MVE and Alfuy viruses probably emerged in the Malaya-Indonesian region from an African progenitor virus, possibly a virus related to Usutu virus. WN virus, however, is believed to have emerged in Africa, and then dispersed through avian migration. Evidence suggests that there are at least seven genetic lineages of WN virus, of which lineage 1b spread to Australasia as Kunjin virus, lineages 1a and 5 spread to India, and lineage 6 spread to Malaysia. Indeed, flaviviruses have a propensity to spread and emerge in new geographic areas, and they represent a potential source for new disease emergence. Many of the factors associated with disease emergence are present in the region, such as changes in land use and deforestation, increasing population movement, urbanization, and increasing trade. Furthermore, because of their ecology and dependence on climate, there is a strong likelihood that global warming may significantly increase the potential for disease emergence and/or spread.
    Matched MeSH terms: Communicable Diseases, Emerging/epidemiology; Communicable Diseases, Emerging/transmission*; Communicable Diseases, Emerging/veterinary*
  10. Mackenzie JS, Field HE, Guyatt KJ
    J Appl Microbiol, 2003;94 Suppl:59S-69S.
    PMID: 12675937
    Since 1994, a number of novel viruses have been described from bats in Australia and Malaysia, particularly from fruit bats belonging to the genus Pteropus (flying foxes), and it is probable that related viruses will be found in other countries across the geographical range of other members of the genus. These viruses include Hendra and Nipah viruses, members of a new genus, Henipaviruses, within the family Paramyxoviridae; Menangle and Tioman viruses, new members of the Rubulavirus genus within the Paramyxoviridae; and Australian bat lyssavirus (ABLV), a member of the Lyssavirus genus in the family Rhabdoviridae. All but Tioman virus are known to be associated with human and/or livestock diseases. The isolation, disease associations and biological properties of the viruses are described, and are used as the basis for developing management strategies for disease prevention or control. These strategies are directed largely at disease minimization through good farm management practices, reducing the potential for exposure to flying foxes, and better disease recognition and diagnosis, and for ABLV specifically, the use of rabies vaccine for pre- and post-exposure prophylaxis. Finally, an intriguing and long-term strategy is that of wildlife immunization through plant-derived vaccination.
    Matched MeSH terms: Communicable Diseases, Emerging/diagnosis*; Communicable Diseases, Emerging/prevention & control; Communicable Diseases, Emerging/transmission
  11. Raza A, Ahmadian A, Rafiq M, Salahshour S, Naveed M, Ferrara M, et al.
    Adv Differ Equ, 2020;2020(1):663.
    PMID: 33250928 DOI: 10.1186/s13662-020-03116-8
    In this manuscript, we investigate a nonlinear delayed model to study the dynamics of human-immunodeficiency-virus in the population. For analysis, we find the equilibria of a susceptible-infectious-immune system with a delay term. The well-established tools such as the Routh-Hurwitz criterion, Volterra-Lyapunov function, and Lasalle invariance principle are presented to investigate the stability of the model. The reproduction number and sensitivity of parameters are investigated. If the delay tactics are decreased, then the disease is endemic. On the other hand, if the delay tactics are increased then the disease is controlled in the population. The effect of the delay tactics with subpopulations is investigated. More precisely, all parameters are dependent on delay terms. In the end, to give the strength to a theoretical analysis of the model, a computer simulation is presented.
    Matched MeSH terms: Communicable Diseases
  12. Amaya M, Broder CC
    Annu Rev Virol, 2020 09 29;7(1):447-473.
    PMID: 32991264 DOI: 10.1146/annurev-virology-021920-113833
    Hendra virus (HeV) and Nipah virus (NiV) are bat-borne zoonotic para-myxoviruses identified in the mid- to late 1990s in outbreaks of severe disease in livestock and people in Australia and Malaysia, respectively. HeV repeatedly re-emerges in Australia while NiV continues to cause outbreaks in South Asia (Bangladesh and India), and these viruses have remained transboundary threats. In people and several mammalian species, HeV and NiV infections present as a severe systemic and often fatal neurologic and/or respiratory disease. NiV stands out as a potential pandemic threat because of its associated high case-fatality rates and capacity for human-to-human transmission. The development of effective vaccines, suitable for people and livestock, against HeV and NiV has been a research focus. Here, we review the progress made in NiV and HeV vaccine development, with an emphasis on those approaches that have been tested in established animal challenge models of NiV and HeV infection and disease.
    Matched MeSH terms: Communicable Diseases, Emerging/immunology; Communicable Diseases, Emerging/prevention & control*; Communicable Diseases, Emerging/virology
  13. Kulenthran, A.
    JUMMEC, 2009;12(1):1-2.
    MyJurnal
    The present issue brings a diverse yet interesting array of research, but they all have a common thread-they answer to a clinical problem raised. The topics span human sexuality, diagnostic challenges, sports medicine, nosocomial infections, screening for neonatal infections, statistical analysis and fine-tuning the art of anaesthesia.(Copied from article).
    Matched MeSH terms: Communicable Diseases
  14. Rozali, A., Zakaria, A., Sherina, M.S., Muhd Amin, M., Mohd Ghazalli, M.T., Muhamad Ello, M.S., et al.
    MyJurnal
    Military personnel who are deployed for peace-keeping missions are exposed to many hazards, including infectious diseases. One of the most common and fatal infectious disease is Malaria. Although well controlled in Malaysia, this deadly disease is still widely endemic in many other countries especially Africa. We would like to report the case of a military personnel who was infected with Malaria during a peace-keeping mission in Sudan and subsequently died after returning home. We hope that by reporting this case in depth, strategic actions can be taken to avoid similar unfortunate events in future.
    Matched MeSH terms: Communicable Diseases
  15. Tan YF, Teng CL, Chua KB, Voon K
    J Infect Dev Ctries, 2017 Mar 31;11(3):215-219.
    PMID: 28368854 DOI: 10.3855/jidc.9112
    INTRODUCTION: Pteropine orthoreovirus (PRV) is an emerging zoonotic respiratory virus that has spilled over from bats to humans. Though initially found only in bats, further case studies have found viable virus in ill patients.

    METHODOLOGY: PubMed was queried with the keywords of Nelson Bay orthoreovirus OR Pteropine orthoreovirus OR Melaka orthoreovirus OR Kampar orthoreovirus, and returned 17 hits.

    RESULTS: Based on prevalence studies, the presence of PRV has been reported in Malaysia and Vietnam, both developing countries. Other case reports also provide further evidence of the presence of PRV in the Southeast Asian region. Despite the absence of PRV in their home countries, travellers from Hong Kong and Japan to Indonesia have returned to their countries ill with this virus, indicating that local communities in Indonesia might be affected by this virus.

    CONCLUSIONS: This work aims to bring to light this emerging zoonotic respiratory virus circulating among developing countries in Southeast Asia. To improve the understanding of PRV of the medical and scientific community in the Southeast Asian region, this work introduces the general features of PRV, reports of imported PRV, prevalence, and clinical features of PRV. Gaps in knowledge about PRV have also been identified in this work, and we hope that future studies can be undertaken to improve our understanding of this virus.

    Matched MeSH terms: Communicable Diseases, Emerging/epidemiology; Communicable Diseases, Emerging/pathology; Communicable Diseases, Emerging/virology
  16. Ninvilai P, Nonthabenjawan N, Limcharoen B, Tunterak W, Oraveerakul K, Banlunara W, et al.
    Transbound Emerg Dis, 2018 Oct;65(5):1208-1216.
    PMID: 29520997 DOI: 10.1111/tbed.12859
    Duck Tembusu virus (DTMUV), a newly emerging virus in ducks, was first reported in China in 2010. However, an unknown severe contagious disease associated with severe neurological signs and egg production losses in ducks, resembling to DTMUV infection, was observed in Thailand since 2007. To determine the presence of DTMUV in 2007, the clinical samples from affected ducks collected in 2007 were tested for DTMUV using pathological and virological analyses. Gross and histopathological lesions of affected ducks were mostly restricted to the ovary, brain and spinal cord, and correlated with the presence of flavivirus antigen in the brain and spinal cord samples. Subsequently, DTMUV was identified by RT-PCR and nucleotide sequencing of the polyprotein gene. Phylogenetic analysis of the polyprotein gene sequence revealed that the 2007 Thai DTMUV was a unique virus, belonged within DTMUV cluster 1, but distinctively separated from the Malaysian DTMUV, which was the most closely related DTMUV. It is interesting to note that the 2007 Thai DTMUV was genetically different from the currently circulating Thai and Chinese DTMUVs, which belonged to cluster 2. Our findings indicated that the 2007 Thai DTMUV emerged earlier from a common ancestor with the recently reported DTMUVs; however, it was genetically distinctive to any of the currently circulating DTMUVs. In conclusion, our data demonstrated the presence of DTMUV in the Thai ducks since 2007, prior to the first report of DTMUV in China in 2010. This study indicates that DTMUV may have circulated in the region long before 2010 and highlights high genetic diversity of DTMUVs in Asia.
    Matched MeSH terms: Communicable Diseases, Emerging/epidemiology; Communicable Diseases, Emerging/veterinary*; Communicable Diseases, Emerging/virology
  17. Yusof F, Md Ismail A.I.B., Ali N
    Sains Malaysiana, 2014;43:1045-1051.
    Hantavirus is a serious disease caused by rodents which can lead to mortality. Many efforts have been carried out by researchers to develop and analyze mathematical models of Hantavirus infection. In this paper, the Peixoto and Abramson (2006) biodiversity model is modified to include the effect of predators and study the prediction of the modified model. When rodent and predator populations are in competition, the predator populations have the effect of reducing the prevalence of infection. Predators may be used for control and reduces the number of competing species to stabilize the populations at a persistent equilibrium.
    Matched MeSH terms: Communicable Diseases
  18. Kou J, Xin TY, McCarron P, Gupta G, Dureja H, Satija S, et al.
    J Environ Pathol Toxicol Oncol, 2020;39(2):125-136.
    PMID: 32749122 DOI: 10.1615/JEnvironPatholToxicolOncol.2020032665
    Biofilms are a collective of multiple types of bacteria that develop on a variety of surfaces. Biofilm development results in heightened resistance to antibiotics. Quorum sensing plays an important role in biofilm development as it is one of the common communication mechanisms within cells, which balances and stabilizes the environment, when the amount of bacteria increases. Because of the important implications of the roles biofilms play in infectious diseases, it is crucial to investigate natural antibacterial agents that are able to regulate biofilm formation and development. Various studies have suggested that natural plant products have the potential to suppress bacterial growth and exhibit chemopreventive traits in the modulation of biofilm development. In this review, we discuss and collate potential antibiofilm drugs and biological molecules from natural sources, along with their underlying mechanisms of action. In addition, we also discuss the antibiofilm drugs that are currently under clinical trials and highlight their potential future uses.
    Matched MeSH terms: Communicable Diseases
  19. Lai JY, Lim TS
    Int J Biol Macromol, 2020 Nov 15;163:640-648.
    PMID: 32650013 DOI: 10.1016/j.ijbiomac.2020.06.268
    Antibody phage display is regarded as a critical tool for the development of monoclonal antibodies for infectious diseases. The different classes of antibody libraries are classified based on the source of repertoire used to generate the libraries. Immune antibody libraries are generated from disease infected host or immunization against an infectious agent. Antibodies derived from immune libraries are distinct from those derived from naïve libraries as the host's in vivo immune mechanisms shape the antibody repertoire to yield high affinity antibodies. As the immune system is constantly evolving in accordance to the health state of an individual, immune libraries can offer more than just infection-specific antibodies but also antibodies derived from the memory B-cells much like naïve libraries. The combinatorial nature of the gene cloning process would give rise to a combination of natural and un-natural antibody gene pairings in the immune library. These factors have a profound impact on the coverage of immune antibody libraries to target both disease-specific and non-disease specific antigens. This review looks at the diverse nature of antibody responses for immune library generation and discusses the extended potential of a disease-specified immune library in the context of phage display.
    Matched MeSH terms: Communicable Diseases/immunology*; Communicable Diseases/parasitology; Communicable Diseases/virology
  20. Johnston SC, Briese T, Bell TM, Pratt WD, Shamblin JD, Esham HL, et al.
    PLoS One, 2015;10(2):e0117817.
    PMID: 25706617 DOI: 10.1371/journal.pone.0117817
    Henipaviruses are implicated in severe and frequently fatal pneumonia and encephalitis in humans. There are no approved vaccines or treatments available for human use, and testing of candidates requires the use of well-characterized animal models that mimic human disease. We performed a comprehensive and statistically-powered evaluation of the African green monkey model to define parameters critical to disease progression and the extent to which they correlate with human disease. African green monkeys were inoculated by the intratracheal route with 2.5 × 10(4) plaque forming units of the Malaysia strain of Nipah virus. Physiological data captured using telemetry implants and assessed in conjunction with clinical pathology were consistent with shock, and histopathology confirmed widespread tissue involvement associated with systemic vasculitis in animals that succumbed to acute disease. In addition, relapse encephalitis was identified in 100% of animals that survived beyond the acute disease phase. Our data suggest that disease progression in the African green monkey is comparable to the variable outcome of Nipah virus infection in humans.
    Matched MeSH terms: Communicable Diseases/pathology; Communicable Diseases/virology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links