METHODS: The addressed focused question was "Is aPDT effective in the treatment of AgP?" MEDLINE/PubMed, EMBASE, Scopus, ISI Web of knowledge and Google-Scholar databases were searched from 1977 till May 2015 using combinations of the following keywords: antimicrobial; photochemotherapy; photodynamic therapy; photosensitizing agents; AgP; scaling and root-planing (SRP). Reviews, case reports, commentaries, and articles published in languages other than English were excluded.
RESULTS: Seven studies were included. In 5 studies, aPDT was performed as an adjunct to SRP. Laserwavelengths and duration of irradiation ranged between 660-690 nm and 60-120 s, respectively. Laser power output as reported in 2 studies was 75 mW. One study showed significant improvement in periodontal parameters for subjects receiving aPDT as an adjunct to SRP as compared to treatment with SRP alone at follow up. However, comparable periodontal parameters were reported when aPDT as an adjunct to SRP was compared to SRP alone in the treatment of AgP in one study. One study showed comparable outcomes when aPDT was compared to SRP in the treatment of AgP. In two studies, adjunctive antibiotic administration to SRP showed significantly better outcomes when compared to application of adjunctive use of aPDT to SRP.
CONCLUSION: aPDT is effective as an adjunct to SRP for the management of AgP, however, further randomized clinical trials with well defined control groups are needed in this regard.
MATERIALS AND METHODS: All newly diagnosed patients with squamous cell carcinoma of head and neck (HNSCC) referred for treatment to the Oncology Unit at UMMC from 2003-2010 were retrospectively analyzed. Treatment outcomes were 5-year overall survival (OS), cause specific survival (CSS), loco-regional control (LRC) and radiotherapy (RT) related side effects. Kaplan-Meier and log rank analyses were used to determine survival outcomes, stratified according to American Joint Committee on Cancer (AJCC) stage.
RESULTS: A total of 130 cases were analysed. Most cases (81.5%) were at late stage (AJCC III-IVB) at presentation. The 5-year OS for the whole study population was 34.4% with a median follow up of 24 months. The 5-year OS according to AJCC stage was 100%, 48.2%, 41.4% and 22.0% for stage I, II, III and IVA-B, respectively. The 5-year overall CSS and LCR were 45.4% and 55.4%, respectively. Late effects of RT were documented in 41.4% of patients. The most common late effect was xerostomia.
CONCLUSIONS: The treatment outcome of HNSCC at our centre is lagging behind those of developed nations. Efforts to increase the number of patients presenting in earlier stages, increase in the use of combined modality treatment, especially concurrent chemoradiotherapy and implementation of intensity modulated radiotherapy, may lead to better outcomes for our HNC patients.
METHODS: Databases (MEDLINE via PubMed; EMBASE; Cochrane Central Register of Controlled Trials and Cochrane Oral Health Group Trials Register databases) were searched from 1980 up to and including July 2016. The addressed PICO question was: "What effect does aPDT and/or LT as an adjunct to SRP have on the GCF inflammatory proteins in periodontal disease patients?"
RESULTS: Eight studies used aPDT while 10 studies used laser alone. Eight cytokines including tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, IL-6, IL-8, IL-10, interferon gamma (IFN-γ), matrix metalloproteinase (MMP)-8 and granulocyte colony-stimulating factor (GM-CSF) were eligible for qualitative analysis for aPDT and LT studies. Four aPDT studies showed significant reduction in IL-1β while one study showed significant reduction in TNF-α levels after aPDT application at follow-up. One study showed significant reduction of IFN-γ, IL-8 and GM-CSF levels after aPDT at follow-up. IL-1β significantly reduced in 4 LT studies, while one study showed significant decrease for IL-6 and TIMP-1 levels. MMP-8 and TNF-α showed significant reduction in three and one study respectively.
CONCLUSION: It remains debatable whether adjunctive aPDT or LT is effective in the reduction of GCF inflammatory proteins in periodontal disease due to non-standard laser parameters and short follow up period. These findings should be considered preliminary and further studies with long-term follow up and standardized laser parameters are recommended.
METHOD: Eligible patients with chronic wounds were enrolled between March and June 2016, from the Wound Care Unit, Hospital Kuala Lumpur in this consecutive case series. Standard wound care was performed with microcurrent as an adjunct therapy. Each patient was treated with an anti-inflammatory frequency, followed by a vasodilation frequency, while having their wounds cleansed during each dressing change. Patients were loaned a home-microcurrent device to treat themselves three times daily using a tissue repair frequency for four weeks.
RESULTS: A total of 100 patients with chronic wounds, such as diabetic foot ulcers, venous leg ulcers, and pressure ulcers, were recruited. During the four-week treatment period, all patients had a reduction in wound size, with 16 having complete wound closure. All 89 of the 100 patients who complained of pain, associated with their wound, experienced reduced pain scores, with 11 being pain-free at the end of the four-week period. There was significant reduction (p<0.001) in both mean pain score and mean wound area during the treatment period, as well as improvements in other parameters, such as reduction in inflammatory symptoms (leg swelling, foot stiffness), increased vasodilation (skin discolouration, leg heaviness, early morning erection, sensation), improvement in sleep quality, gait, and frequency of bowel movement. No adverse events were reported.
CONCLUSION: The results of this study show there was significant reduction in wound area and pain score during the treatment period. The ease of use of microcurrent devices would advocate its use in accelerating wound healing.
METHODS: Adult WKY male rats were randomly distributed in nine groups: intact control, diabetic control, diabetic + 625 mg/kg, 1.25 g/kg UD, diabetic + 100 mg/kg Metformin, diabetic + swimming, diabetic + swimming 625 mg/kg, 1.25 g/kg UD, and diabetic +100 mg/kg Metformin + swimming. The hearts of the animals were punctured, and blood samples were collected for biochemical analysis. The entire pancreas was exposed for histologic examination. The effect of UD on insulin secretion by RIN-5F cells in 6.25 or 12.5 mM glucose dose was examined. Glucose uptake by cultured L6 myotubes was determined.
RESULTS: The serum glucose concentration decreased, the insulin resistance and insulin sensitivity significantly increased in treated groups. These changes were more pronounced in the group that received UD extract and swimming training. Regeneration and less beta cell damage of Langerhans islets were observed in the treated groups. UD treatment increased insulin secretion in the RIN-5F cells and glucose uptake in the L6 myotubes cells.
CONCLUSIONS: Swimming exercises accompanied by consuming UD aqueous extracts effectively improved diabetic parameters, repaired pancreatic tissues in streptozotocin-induced diabetics in vivo, and increased glucose uptake or insulin in UD-treated cells in vitro.