Displaying publications 41 - 60 of 134 in total

Abstract:
Sort:
  1. Gharehbolagh SA, Fallah B, Izadi A, Ardestani ZS, Malekifar P, M Borman A, et al.
    PLoS One, 2020;15(8):e0237046.
    PMID: 32817677 DOI: 10.1371/journal.pone.0237046
    Candida africana is a pathogenic species within the Candida albicans species complex. Due to the limited knowledge concerning its prevalence and antifungal susceptibility profiles, a comprehensive study is overdue. Accordingly, we performed a search of the electronic databases for literature published in the English language between 1 January 2001 and 21 March 2020. Citations were screened, relevant articles were identified, and data were extracted to determine overall intra-C. albicans complex prevalence, geographical distribution, and antifungal susceptibility profiles for C. africana. From a total of 366 articles, 41 were eligible for inclusion in this study. Our results showed that C. africana has a worldwide distribution. The pooled intra-C. albicans complex prevalence of C. africana was 1.67% (95% CI 0.98-2.49). Prevalence data were available for 11 countries from 4 continents. Iran (3.02%, 95%CI 1.51-4.92) and Honduras (3.03%, 95% CI 0.83-10.39) had the highest values and Malaysia (0%) had the lowest prevalence. Vaginal specimens were the most common source of C. africana (92.81%; 155 out of 167 isolates with available data). However, this species has also been isolated from cases of balanitis, from patients with oral lesions, and from respiratory, urine, and cutaneous samples. Data concerning the susceptibility of C. africana to 16 antifungal drugs were available in the literature. Generally, the minimum inhibitory concentrations of antifungal drugs against this species were low. In conclusion, C. africana demonstrates geographical variation in prevalence and high susceptibility to antifungal drugs. However, due to the relative scarcity of existing data concerning this species, further studies will be required to establish more firm conclusions.
    Matched MeSH terms: Candida albicans/drug effects; Candida albicans/pathogenicity
  2. Musa SF, Yeat TS, Kamal LZM, Tabana YM, Ahmed MA, El Ouweini A, et al.
    J Sci Food Agric, 2018 Feb;98(3):1197-1207.
    PMID: 28746729 DOI: 10.1002/jsfa.8573
    BACKGROUND: Green synthesis of silver nanoparticles (AgNPs) has become widely practiced worldwide. In this study, AgNPs were synthesized using a hot-water extract of the edible mushroom Pleurotus sajor-caju. The product, PSC-AgNPs, was characterized by using UV-visible spectra, dynamic light scattering analysis, transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectrometry. To assess its antifungal activity against Candida albicans, gene transcription and protein expression analyses were conducted for CaICL1 and its product, ICL, using real-time quantitative polymerase chain reaction and western blot, respectively.

    RESULTS: PSC-AgNPs with an average particle size of 11.68 nm inhibited the growth of the pathogenic yeast C. albicans. Values for minimum inhibitory concentration and minimum fungicidal concentration were 250 and 500 mg L-1 , respectively. TEM images revealed that the average particle size of PSC-AgNPs was 16.8 nm, with the values for zeta potential and the polydispersity index being -8.54 mV and 0.137, respectively. XRD and FTIR spectra showed PSC-AgNPs to have a face-centered cubic crystalline structure. The polysaccharides and amino acid residues present in P. sajor-caju extract were found to be involved in reducing Ag+ to AgNP. Both CaICL1 transcription and ICL protein expression were found to be suppressed in the cells treated with PSC-AgNPs as compared with the control.

    CONCLUSION: Our PSC-AgNP preparation makes for a promising antifungal agent that can downregulate isocitrate lyase. © 2017 Society of Chemical Industry.

    Matched MeSH terms: Candida albicans/drug effects*; Candida albicans/growth & development
  3. Hussain MA, Ahmed D, Anwar A, Perveen S, Ahmed S, Anis I, et al.
    Int Microbiol, 2019 Jun;22(2):239-246.
    PMID: 30810990 DOI: 10.1007/s10123-018-00043-3
    Silver nanoparticles (SN) have been recently developed as a new class of antimicrobial agents against numerous pathogenic microorganisms. SN have also been used as efficient drug delivery systems and have been linked with increasing drug potency. Here, we demonstrated the enhanced antifungal efficacy of nystatin (NYT) and fluconazole (FLU) after conjugation with SN. The antifungal bioactivity of NYT- and FLU-coated SN was evaluated against Candida albicans ATCC 10231 and Aspergillus brasiliensis ATCC 16404 by the agar tube dilution method. The aim of this study was to determine and compare the antifungal efficacy of NYT and FLU with their SN and, finally, the combination of both nanoparticles as NYT-SN + FLU-SN against pathogenic fungi. The results indicated that all test samples showed a dose-dependent response against tested fungi. SN significantly enhanced the antifungal effects of NYT and FLU as compared to drugs alone. We observed a remarkable increase in the percent inhibition of both fungi (90-100%) when treated with a combination of both nanoparticles NYT-SN + FLU-SN at 200 μg/mL only. Furthermore, the morphological modifications occurred at the surface of fungal species were also analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). While tested against primary human cell line, all SN showed negligible cytotoxicity. Hence, these results suggest that the combination of SN with NYT and FLU may have clinical implications in the treatment of fungal infections. However, in vivo studies are needed before recommending the use of these nanoparticles safely in clinical situations.
    Matched MeSH terms: Candida albicans/drug effects*; Candida albicans/ultrastructure
  4. Torey A, Sasidharan S
    Eur Rev Med Pharmacol Sci, 2011 Aug;15(8):875-82.
    PMID: 21845797
    Candida (C.) albicans infection in its biofilm mode of growth has taken centre point with the increasing recognition of its role in human infections due to the development of resistance to the commonly used antibiotic or phenotypic adaptation within the biofilm. Hence, in this study the inhibitory effect of methanol extract of Cassia (C.) spectabilis leaves was evaluated against biofilm forming C. albicans.
    Matched MeSH terms: Candida albicans/drug effects*; Candida albicans/physiology; Candida albicans/ultrastructure*
  5. Illyaaseen Z, Ngeow YF, Yap SF, Ng HF
    Malays J Pathol, 2021 Apr;43(1):55-61.
    PMID: 33903306
    Candida albicans is an important opportunistic fungal pathogen capable of causing fatal systemic infections in humans. Presently in Malaysia, there is little information available on the genetic diversity of this organism and trends in behavioural characteristics. In this project, three genotyping methods: 25S rDNA genotyping, Alternative Lengthening of Telomerase (ALT) sequence typing and Multi-Locus Sequence Typing (MLST) were applied to study the genetic diversity of strains from infected hospital in-patients and asymptomatic individuals in the community. The results showed that, with the 25S rDNA genotyping, as in other parts of the world, the most common genotype was type A which accounted for approximately 70% of the 111 isolates tested. Further typing with the ALT sequence showed type 3 to be the most common in the isolates tested. MLST analysis revealed many possibly novel sequence types, as well as a statistically significant association between pathogenicity and a group of closely related isolates, most of which were from hospital samples. Further work on genotypes associated with enhanced virulence will help to clarify the value of genotyping for clinical and epidemiological investigations.
    Matched MeSH terms: Candida albicans
  6. Arzmi MH, Alnuaimi AD, Dashper S, Cirillo N, Reynolds EC, McCullough M
    Med Mycol, 2016 Nov 01;54(8):856-64.
    PMID: 27354487 DOI: 10.1093/mmy/myw042
    Oral biofilms comprise of extracellular polysaccharides and polymicrobial microorganisms. The objective of this study was to determine the effect of polymicrobial interactions of Candida albicans, Actinomyces naeslundii, and Streptococcus mutans on biofilm formation with the hypotheses that biofilm biomass and metabolic activity are both C. albicans strain and growth medium dependent. To study monospecific biofilms, C. albicans, A. naeslundii, and S. mutans were inoculated into artificial saliva medium (ASM) and RPMI-1640 in separate vials, whereas to study polymicrobial biofilm formation, the inoculum containing microorganisms was prepared in the same vial prior inoculation into a 96-well plate followed by 72 hours incubation. Finally, biofilm biomass and metabolic activity were measured using crystal violet and XTT assays, respectively. Our results showed variability of monospecies and polymicrobial biofilm biomass between C. albicans strains and growth medium. Based on cut-offs, out of 32, seven RPMI-grown biofilms had high biofilm biomass (HBB), whereas, in ASM-grown biofilms, 14 out of 32 were HBB. Of the 32 biofilms grown in RPMI-1640, 21 were high metabolic activity (HMA), whereas in ASM, there was no biofilm had HMA. Significant differences were observed between ASM and RPMI-grown biofilms with respect to metabolic activity (P <01). In conclusion, biofilm biomass and metabolic activity were both C. albicans strain and growth medium dependent.
    Matched MeSH terms: Candida albicans/growth & development; Candida albicans/metabolism; Candida albicans/physiology*
  7. Rosli N, Sumathy V, Vikneswaran M, Sreeramanan S
    Trop Biomed, 2014 Dec;31(4):871-9.
    PMID: 25776614 MyJurnal
    Hymenocallis littoralis (Jacq.) Salisb (Melong kecil) commonly known as 'Spider Lily' is an herbaceous plant from the family Amaryllidaceae. Study was carried out to determine the effect of H. littoralis leaf extract on the growth and morphogenesis of two pathogenic microbes, Candida albicans and Escherichia coli. The leaf extract displayed favourable anticandidal and antibacterial activity with a minimum inhibition concentration (MIC) of 6.25 mg/mL. Time kill study showed both microbes were completely killed after treated with leaf extract at 20 h. Both microbes' cell walls were heavily ruptured based on scanning electron microscopy (SEM) analysis. The significant anticandidal and antibacterial activities showed by H. littoralis leaf extract suggested the potential antimicrobial agent against C. albicans and E. coli.
    Matched MeSH terms: Candida albicans/drug effects*; Candida albicans/growth & development; Candida albicans/ultrastructure
  8. Chong PP, Chin VK, Wong WF, Madhavan P, Yong VC, Looi CY
    Genes (Basel), 2018 Nov 07;9(11).
    PMID: 30405082 DOI: 10.3390/genes9110540
    Candida albicans is an opportunistic fungal pathogen, which causes a plethora of superficial, as well as invasive, infections in humans. The ability of this fungus in switching from commensalism to active infection is attributed to its many virulence traits. Biofilm formation is a key process, which allows the fungus to adhere to and proliferate on medically implanted devices as well as host tissue and cause serious life-threatening infections. Biofilms are complex communities of filamentous and yeast cells surrounded by an extracellular matrix that confers an enhanced degree of resistance to antifungal drugs. Moreover, the extensive plasticity of the C. albicans genome has given this versatile fungus the added advantage of microevolution and adaptation to thrive within the unique environmental niches within the host. To combat these challenges in dealing with C. albicans infections, it is imperative that we target specifically the molecular pathways involved in biofilm formation as well as drug resistance. With the advent of the -omics era and whole genome sequencing platforms, novel pathways and genes involved in the pathogenesis of the fungus have been unraveled. Researchers have used a myriad of strategies including transcriptome analysis for C. albicans cells grown in different environments, whole genome sequencing of different strains, functional genomics approaches to identify critical regulatory genes, as well as comparative genomics analysis between C. albicans and its closely related, much less virulent relative, C. dubliniensis, in the quest to increase our understanding of the mechanisms underlying the success of C. albicans as a major fungal pathogen. This review attempts to summarize the most recent advancements in the field of biofilm and antifungal resistance research and offers suggestions for future directions in therapeutics development.
    Matched MeSH terms: Candida albicans
  9. Gunasegar S, Himratul-Aznita WH
    FEMS Yeast Res., 2019 Mar 01;19(2).
    PMID: 30476044 DOI: 10.1093/femsyr/foy123
    Candida albicans ATCC 14053 and Candida parapsilosis ATCC 22019 hyphal-wall protein 1 (HWP1) are involved in hyphae formation and pathogenesis. The transcriptional agglutinin-like sequence 3 (ALS3) genes in both species are responsible for the development of biofilm and colonization on tooth surfaces. Therefore, we investigated the expression of HWP1 and ALS3 quantitatively in C. albicans and C. parapsilosis and examined the biofilm structure upon exposure to various nicotine concentrations. In vitro, biofilms of Candida species were developed directly on slides using the Lab-Tek Chamber Slide System and visualized by confocal laser scanning microscopy. Quantitative real-time polymerase chain reaction was used to measure HWP1 and ALS3 expression in C. albicans ATCC 14053 and C. parapsilosis ATCC 22019. The results indicated that nicotine multiplied the number of yeast cells and increased the extracellular polysaccharides of Candida species. We also found that 1-2 mg/mL nicotine could enhance the formation of biofilm. The findings also revealed that the expression of HWP1 and ALS3 in Candida species were increased as the nicotine concentration increased. Therefore, nicotine influences the biofilm development of oral-associated C. albicans ATCC 14053 and C. parapsilosis ATCC 22019.
    Matched MeSH terms: Candida albicans
  10. Lim SJ, Mohamad Ali MS, Sabri S, Muhd Noor ND, Salleh AB, Oslan SN
    Med Mycol, 2021 Dec 03;59(12):1127-1144.
    PMID: 34506621 DOI: 10.1093/mmy/myab053
    Candidiasis is a fungal infection caused by Candida spp. especially Candida albicans, C. glabrata, C. parapsilosis and C. tropicalis. Although the medicinal therapeutic strategies have rapidly improved, the mortality rate as candidiasis has continuously increased. The secreted and membrane-bound virulence factors (VFs) are responsible for fungal invasion, damage and translocation through the host enterocytes besides the evasion from host immune system. VFs such as agglutinin-like sequences (Als), heat shock protein 70, phospholipases, secreted aspartyl proteinases (Sap), lipases, enolases and phytases are mostly hydrolases which degrade or interact with the enterocyte membrane components. Candidalysin, however, acts as a peptide toxin to induce necrotic cell lysis. To date, structural studies of the VFs remain underexplored, hindering their functional analyses. Among the VFs, only Sap and Als have their structures deposited in Protein Data Bank (PDB). Therefore, this review scrutinizes the mechanisms of these VFs by discussing the VF-deficient studies of several Candida spp. and their abilities to produce these VFs. Nonetheless, their latest reported sequential and structural analyses are discussed to impart a wider perception of the host-pathogen interactions and potential vaccine or antifungal drug targets. This review signifies that more VFs structural investigations and mining in the emerging Candida spp. are required to decipher their pathogenicity and virulence mechanisms compared to the prominent C. albicans.

    LAY SUMMARY: Candida virulence factors (VFs) including mainly enzymes and proteins play vital roles in breaching the human intestinal barrier and causing deadly invasive candidiasis. Limited VFs' structural studies hinder deeper comprehension of their mechanisms and thus the design of vaccines and antifungal drugs against fungal infections.

    Matched MeSH terms: Candida albicans
  11. Munusamy K, Vadivelu J, Tay ST
    Rev Iberoam Micol, 2018 03 12;35(2):68-72.
    PMID: 29544734 DOI: 10.1016/j.riam.2017.07.001
    BACKGROUND: Biofilm is known to contribute to the antifungal resistance of Candida yeasts. Aureobasidin A (AbA), a cyclic depsipeptide targeting fungal sphingolipid biosynthesis, has been shown to be effective against several Candida species.

    AIMS: The aim of this study was to investigate Candida biofilm growth morphology, its biomass, metabolic activity, and to determine the effects of AbA on the biofilm growth.

    METHODS: The biofilm forming ability of several clinical isolates of different Candida species from our culture collection was determined using established methods (crystal violet and XTT assays). The determination of AbA planktonic and biofilm MICs was performed based on a micro-broth dilution method. The anti-biofilm effect of AbA on Candida albicans was examined using field emission scanning electron microscope (FESEM) analysis.

    RESULTS: A total of 35 (29.7%) of 118 Candida isolates were regarded as biofilm producers in this study. Candida parapsilosis was the largest producer, followed by Candida tropicalis and C. albicans. Two morphological variants of biofilms were identified in our isolates, with 48.6% of the isolates showing mainly yeast and pseudohyphae-like structures, while the remaining ones were predominantly filamentous forms. The biofilm producers were divided into two populations (low and high), based on the ability in producing biomass and their metabolic activity. Candida isolates with filamentous growth, higher biomass and metabolic activity showed lower AbA MIC50 (at least fourfold), compared to those exhibiting yeast morphology, and lower biomass and metabolic activity. The observation of filament detachment and the almost complete removal of biofilm from AbA-treated C. albicans biofilm in FESEM analysis suggests an anti-biofilm effect of AbA.

    CONCLUSIONS: The variability in the growth characteristics of Candida biofilm cultures affects susceptibility to AbA, with higher susceptibility noted in biofilm cultures exhibiting filamentous form and high biomass/metabolic activity.

    Matched MeSH terms: Candida albicans/drug effects; Candida albicans/physiology; Candida albicans/ultrastructure
  12. Marunganathan V, Kumar MSK, Kari ZA, Giri J, Shaik MR, Shaik B, et al.
    Mol Biol Rep, 2024 Jan 07;51(1):89.
    PMID: 38184807 DOI: 10.1007/s11033-023-09146-1
    BACKGROUND: Kappaphycus alvarezii, a marine red algae species, has gained significant attention in recent years due to its versatile bioactive compounds. Among these, κ-carrageenan (CR), a sulfated polysaccharide, exhibits remarkable antimicrobial properties. This study emphasizes the synergism attained by functionalizing zinc oxide nanoparticles (ZnO NPs) with CR, thereby enhancing its antimicrobial efficacy and target specificity against dental pathogens.

    METHODS: In this study, we synthesized ZnO-CR NPs and characterized them using SEM, FTIR, and XRD techniques to authenticate their composition and structural attributes. Moreover, our investigation revealed that ZnO-CR NPs possess better free radical scavenging capabilities, as evidenced by their effective activity in the DPPH and ABTS assay.

    RESULTS: The antimicrobial properties of ZnO-CR NPs were systematically assessed using a zone of inhibition assay against dental pathogens of S. aureus, S. mutans, E. faecalis, and C. albicans, demonstrating their substantial inhibitory effects at a minimal concentration of 50 μg/mL. We elucidated the interaction between CR and the receptors of dental pathogens to further understand their mechanism of action. The ZnO-CR NPs demonstrated a dose-dependent anticancer effect at concentrations of 5 μg/mL, 25 μg/mL, 50 μg/mL, and 100 μg/mL on KB cells, a type of Human Oral Epidermal Carcinoma. The mechanism by which ZnO-CA NPs induced apoptosis in KB cells was determined by observing an increase in the expression of the BCL-2, BAX, and P53 genes.

    CONCLUSION: Our findings unveil the promising potential of ZnO-CR NPs as a candidate with significant utility in dental applications. The demonstrated biocompatibility, potent antioxidant and antiapoptotic activity, along with impressive antimicrobial efficacy position these NPs as a valuable resource in the ongoing fight against dental pathogens and oral cancer.

    Matched MeSH terms: Candida albicans
  13. Khalili V, Shokri H, Md Akim A, Khosravi AR
    Malays J Med Sci, 2016 May;23(3):64-71.
    PMID: 27418871
    Candida albicans (C. albicans) has several virulence factors, in particular heat shock protein 90 (Hsp90), which is expressed by Hsp90 gene. The purposes of this study were to assess the expression of Hsp90 gene in clinical and control isolates of C. albicans obtained from different geographical regions (Malaysia and Iran), different temperatures (25°C, 37°C and 42°C) and mice with candidiasis.
    Matched MeSH terms: Candida albicans
  14. Sundaram A, Grant CM
    Fungal Genet. Biol., 2014 Jun;67:15-23.
    PMID: 24699161 DOI: 10.1016/j.fgb.2014.03.005
    Eukaryotic cells typically respond to stress conditions by inhibiting global protein synthesis. The initiation phase is the main target of regulation and represents a key control point for eukaryotic gene expression. In Saccharomyces cerevisiae and mammalian cells this is achieved by phosphorylation of eukaryotic initiation factor 2 (eIF2α). We have examined how the fungal pathogen Candida albicans responds to oxidative stress conditions and show that oxidants including hydrogen peroxide, the heavy metal cadmium and the thiol oxidant diamide inhibit translation initiation. The inhibition in response to hydrogen peroxide and cadmium largely depends on phosphorylation of eIF2α since minimal inhibition is observed in a gcn2 mutant. In contrast, translation initiation is inhibited in a Gcn2-independent manner in response to diamide. Our data indicate that all three oxidants inhibit growth of C. albicans in a dose-dependent manner, however, loss of GCN2 does not improve growth in the presence of hydrogen peroxide or cadmium. Examination of translational activity indicates that these oxidants inhibit translation at a post-initiation phase which may account for the growth inhibition in a gcn2 mutant. As well as inhibiting global translation initiation, phosphorylation of eIF2α also enhances expression of the GCN4 mRNA in yeast via a well-known translational control mechanism. We show that C. albicans GCN4 is similarly induced in response to oxidative stress conditions and Gcn4 is specifically required for hydrogen peroxide tolerance. Thus, the response of C. albicans to oxidative stress is mediated by oxidant-specific regulation of translation initiation and we discuss our findings in comparison to other eukaryotes including the yeast S. cerevisiae.
    Matched MeSH terms: Candida albicans/metabolism*
  15. Shiekh RA, Malik MA, Al-Thabaiti SA, Wani MY, Nabi A
    ScientificWorldJournal, 2014;2014:404617.
    PMID: 24772018 DOI: 10.1155/2014/404617
    2-Phenyl-N,N'-bis(pyridin-4-ylcarbonyl)butanediamide ligand with a series of transition metal complexes has been synthesized via two routes: microwave irradiation and conventional heating method. Microwave irritation method happened to be the efficient and versatile route for the synthesis of these metal complexes. These complexes were found to have the general composition M(L)Cl2/M(L)(CH3COO)2 (where M = Cu(II), Co(II), Ni(II), and L = ligand). Different physical and spectroscopic techniques were used to investigate the structural features of the synthesized compounds, which supported an octahedral geometry for these complexes. In vitro antifungal activity of the ligand and its metal complexes revealed that the metal complexes are highly active compared to the standard drug. Metal complexes showed enhanced activity compared to the ligand, which is an important step towards the designing of antifungal drug candidates.
    Matched MeSH terms: Candida albicans/drug effects
  16. Daruliza KM, Fernandez L, Jegathambigai R, Sasidharan S
    Eur Rev Med Pharmacol Sci, 2012 Jan;16(1):43-8.
    PMID: 22338547
    Ganoderma (G.) boninense is a white rot fungus, which can be found in the palm oil tree. Several studies have shown that G. boninense has antimicrobial and antagonistic properties. However, there is limited information reported on antifungal properties especially on Candida (C) albicans. Hence, this study was conducted to determine the anti-Candida activity of G. boninense against C albicans.
    Matched MeSH terms: Candida albicans/drug effects*
  17. Rukayadi Y, Hwang JK
    Phytother Res, 2013 Jul;27(7):1061-6.
    PMID: 22969012 DOI: 10.1002/ptr.4834
    The purpose of this study was to investigate the activity of xanthorrhizol isolated from Curcuma xanthorrhiza Roxb. on Candida albicans biofilms at adherent, intermediate, and mature phase of growth. C. albicans biofilms were formed in flat-bottom 96-well microtiter plates. The biofilms of C. albicans at different phases of development were exposed to xanthorrhizol at different concentrations (0.5 µg/mL-256 µg/mL) for 24 h. The metabolic activity of cells within the biofilms was quantified using the XTT reduction assay. Sessile minimum inhibitory concentrations (SMICs) were determined at 50% and 80% reduction in the biofilm OD₄₉₀ compared to the control wells. The SMIC₅₀ and SMIC₈₀ of xanthorrhizol against 18 C. albicans biofilms were 4--16 µg/mL and 8--32 µg/mL, respectively. The results demonstrated that the activity of xanthorrhizol in reducing C. albicans biofilms OD₄₉₀ was dependent on the concentration and the phase of growth of biofilm. Xanthorrhizol at concentration of 8 µg/mL completely reduced in biofilm referring to XTT-colorimetric readings at adherent phase, whereas 32 µg/mL of xanthorrhizol reduced 87.95% and 67.48 % of biofilm referring to XTT-colorimetric readings at intermediate and mature phases, respectively. Xanthorrhizol displayed potent activity against C. albicans biofilms in vitro and therefore might have potential therapeutic implication for biofilm-associated candidal infections.
    Matched MeSH terms: Candida albicans/physiology*
  18. Daruliza KM, Yang KL, Lam KL, Priscilla JT, Sunderasan E, Ong MT
    Eur Rev Med Pharmacol Sci, 2011 Oct;15(10):1163-71.
    PMID: 22165677
    Hevea brasiliensis extracts could potentially be employed as a relatively low cost resource for various anti-fungal activities due to the simplicity of the extract preparation and its abundance especially in the tropical region. Latex B-serum was reported to have anti-cancer property and its specificity in anti-fungal property has not been elucidated. The present study was conducted to determine the anti-fungal activity of Hevea latex B-serum against Candida (C.) albicans (a rounded cell fungus) and Aspergillus (A.) niger (a filamentous fungus).
    Matched MeSH terms: Candida albicans/drug effects*
  19. Sangetha S, Zuraini Z, Sasidharan S, Suryani S
    Nihon Ishinkin Gakkai Zasshi, 2008;49(4):299-304.
    PMID: 19001757
    The fungicidal activity of Cassia spectabilis leaf extracts was investigated using the disk diffusion technique and the broth dilution method. The extract showed a favorable antimicrobial activity against Candida albicans with a minimum inhibition concentration(MIC) value of 6.25 mg / ml. Apart from the fungicidal effects, imaging using scanning electron microscopy (SEM) was done to determine the major alterations in the microstructure of the C. albicans. The main abnormalities noted in the SEM studies were the alterations in morphology and complete collapse of the yeast cells after 36 h of exposure to the extract. The in vitro time-kill study performed using the leaf extract at 1/2, 1 or 2 times of the MIC significantly inhibited the yeast growth with a noticeable drop in optical density (OD) of yeast culture, thus confirming the fungicidal effect of the extract on C. albicans. In addition, in vivo antifungal activity studies on candidiasis in mice showed a 5-fold decrease in Candida in kidneys and blood samples in the groups of animals treated with the extract (2.5 g / kg body weight). In an acute toxicity study using mice, the acute minimum fatal dose of the extract was greater than 2000 mg / kg, and we found no histopathological changes in macroscopic examination by necropsy of mice treated with extract. We conclude that the extract may be safely used as an anticandidal agent.
    Matched MeSH terms: Candida albicans/drug effects
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links