Displaying publications 41 - 60 of 220 in total

Abstract:
Sort:
  1. Xie P, Zheng Y, Lee YY, Zou S, Wu Y, Lai J, et al.
    Food Chem, 2024 Aug 13;461:140879.
    PMID: 39154466 DOI: 10.1016/j.foodchem.2024.140879
    Currently, the poor whipping capabilities of anhydrous milk fat (AMF) in aerated emulsion products are a major obstacle for their use in beverages like tea and coffee, as well as in cakes and desserts, presenting fresh hurdles for the food industry. In this study, the mechanism of action of diacylglycerols (DAGs) with different carbon chain lengths and degrees of saturation on the partial coalescence of aerated emulsions was systematically investigated from three fundamental perspectives: fat crystallization, air-liquid interface rheology, and fat globule interface properties. The optimized crystallization of long carbon chain length diacylglycerol (LCD) based on stearate enhances interactions between fat globules at the air-liquid interface (with an elastic modulus E' reaching 246.42 mN/m), leading to a significantly reduced interface membrane strength. This promotes fat crystal-membrane interactions during whipping, resulting in a thermally stable foam structure with excellent shaping capability due to enhanced partial coalescence of fat globules. Although Laurate based medium carbon chain length diacylglycerol (MCD) promoted fat crystallization and optimized interface properties, it showed weaker foam properties because it did not adequately encapsulate air bubbles during whipping. Conversely, oleate long carbon chain length diacylglycerol (OCD) proved to be ineffective in facilitating fat crystal-membrane interaction, causing foam to have a subpar appearance. Hence, drawing from the carefully examined fat crystal-membrane interaction findings, a proposed mechanism sheds light on how DAGs impact the whipping abilities of aerated emulsions. This mechanism serves as a blueprint for creating aerated emulsions with superior whipping capabilities and foam systems that are resistant to heat.
  2. Zhang Z, Miao W, Ji H, Lin Q, Li X, Sang S, et al.
    Food Chem, 2024 Dec 01;460(Pt 3):140792.
    PMID: 39126939 DOI: 10.1016/j.foodchem.2024.140792
    The low bioavailability of polyphenolic compounds due to poor solubility and stability is a major challenge. Encapsulation of polyphenols in zein-based composite nanoparticles can improve the water dispersion, stability, targeted delivery, and controlled release of polyphenols in the gastrointestinal tract. In this study, we investigated the fluorescence properties, bioactivity, and microstructural characteristics of polyphenols during digestion, revealing that zein nanoparticles protect polyphenols from gastric degradation and promote their sustained release in the small intestine. The effects of different ionic species and salt ion concentrations on the digestive properties of polyphenol complex delivery systems have also been explored. In addition, the formation of "protein corona" structures during digestion may affect bioavailability. These findings highlight the potential of nanoparticle formulations to improve polyphenol stability and absorption. The results of this study may provide new insights and references for the study of polyphenol bioavailability enhancement.
  3. Lv Y, Peng X, Lee YY, Xie X, Tan CP, Wang Y, et al.
    Food Res Int, 2024 Oct;194:114900.
    PMID: 39232527 DOI: 10.1016/j.foodres.2024.114900
    Diacylglycerol (DAG) is generally considered one of the precursors of 3-chloropropanol esters (3-MCPDE) and glycidyl esters (GEs). This study aimed to evaluate static heating and stir-frying properties of peanut oil (PO) and PO based 58% and 82% DAG oils (PDAG-58 and PDAG-82). Observations revealed that, phytonutrient levels notably diminished during static heating, with PDAG exhibiting reduced oxidative stability, but maintaining a stability profile similar to PO over a short period. During stir-frying, 3-MCPDE content initially increased and then decreased whereas the opposite was observed for GEs. Furthermore, as temperature, and NaCl concentration increased, there was a corresponding increase in the levels of 3-MCPDE and GEs, although remained within safe limits. When used in suitable concentrations, these findings underscore the potential of DAG, as a nutritionally rich and oxidatively stable alternative to conventional cooking oils, promoting the use of DAG edible oil in heat-cooked food systems.
  4. Xie R, Peng X, Lee YY, Xie P, Tan CP, Wang Y, et al.
    J Sci Food Agric, 2024 Sep 11.
    PMID: 39258418 DOI: 10.1002/jsfa.13872
    BACKGROUNDS: Glycerolysis, with its advantages of readily available raw materials, simple operation, and mild reaction conditions, is a primary method for producing diacylglycerol (DAG). However, enzymatic glycerolysis faces challenges such as high enzyme costs, low reuse efficiency, and poor stability. The study aims to develop a cost-effective immobilized enzyme by covalently binding lipase to pre-activated carriers through the selection of suitable lipases, carriers, and activating agents. The optimization is intended to improve the glycerolysis reaction for efficient DAG production.

    RESULTS: Lipase CN-TL (from Thermomyces lanuginosus) was selected through glycerolysis reaction and molecular docking to catalyze the glycerolysis reaction. Optimizing the immobilization method by covalently binding CN-TL to poly(ethylene glycol) diglycidyl ether (PEGDGE)-preactivated resin LX-201A resulted in the preparation of the immobilized enzyme TL-PEGDGE-LX. The immobilized enzyme retained over 90% of its initial activity after five consecutive reactions, demonstrating excellent reusability. The DAG content in the product remained at 84.8% of its initial level, further highlighting the enzyme's potential for reusability and its promising applications in the food and oil industries.

    CONCLUSIONS: The immobilized lipase TL-PEGDGE-LX, created by covalently immobilizing lipase CN-TL on PEGDGE-preactivated carriers, demonstrated broad applicability and excellent reusability. This approach offers an economical and convenient immobilization strategy for the enzymatic glycerolysis production of DAG. © 2024 Society of Chemical Industry.

  5. Shimbo S, Moon CS, Zhang ZW, Watanabe T, Ismail NH, Ali RM, et al.
    Tohoku J Exp Med, 1996 Oct;180(2):99-114.
    PMID: 9111760
    Nutrient intake was surveyed by the total food duplicate method in 49 adult ethnically Malay women (at the ages of 18 to 47 years and mostly at 30-39 years) working in Kuala Lumpur, Malaysia. Simultaneously, hematological examinations, serum biochemistry, anthropometry and clinical examination were conducted. Nutrient intakes were estimated in reference to the weight of each food item and the standard food composition tables. Lunch was the most substantial meal of the day with rice as a staple food. Compared with the Recommended Dietary Allowance (RDA) values, daily intakes of energy (1,917 kcal as an arithmetic mean), protein (62.2 g), vitamin B1 (0.83 mg) and vitamin B2 (1.18 mg) were sufficient, but intakes of minerals [i.e., calcium (347.8 mg) and iron (12.5 mg)] and some vitamins [i.e., vitamin A (equivalent to 627 micrograms retinol) and niacin (7.84 mg)] were less than RDA. When evaluated on an individual basis, the prevalence of those who took less than 80% RDA was highest for iron (92%), followed by niacin (80%), calcium (57%) and vitamin A (57%). The presence of 7 hypohemoglobinemia cases may be related to the insufficient iron intake. Overweight cases (14 women) were also detected, the prevalence of which increased at advanced ages. Lipid intake was rather high (28% of total food on energy basis), for which the major source was plants with limited contribution from fish/shellfish.
  6. Ke W, Lee YY, Tan CP, Li A, Zhang Y, Wang Y, et al.
    Food Chem, 2025 Feb 01;464(Pt 2):141722.
    PMID: 39442221 DOI: 10.1016/j.foodchem.2024.141722
    Diacylglycerol (DAG) is a novel functional structural lipid, but its application in base oils remains underexplored. This research investigated the effect of three liquid oils (groundnut oil, corn oil, and flaxseed oil), with varying polyunsaturated fatty acid (PUFA) (39.60, 69.50, and 77.65 %) and DAG content (0.00, 40.00, 80.00 %), on the crystallization behaviors of palm-based oil. DAG (40.00 %), obtained through enzymatic glycerolysis and molecular distillation, was found to stabilize the binary system with good compatibility and fine crystal structure. "Liquid" DAG played a dual role: diluting solid lipids, and promoting crystallization. Increasing DAG content led to larger crystalline domain size, while higher PUFA content accelerated crystallization and increased crystal orderliness, though decreasing crystal density. These results demonstrated the clear influence of PUFA and DAG content on palm-based oil crystallization. This knowledge can guide the utilization of different unsaturated DAGs for tailored fat crystallization in food application.
  7. Xie P, Wang F, Zhou J, Lee YY, Zhang Y, Zou S, et al.
    Food Chem, 2024 Nov 26;466:142196.
    PMID: 39612838 DOI: 10.1016/j.foodchem.2024.142196
    Compared to lard-based shortenings, diacylglycerol (DAG)-based shortenings have demonstrated beneficial effects, such as lowering blood lipids, and reducing postprandial blood glucose levels. In this study, different chain-length DAG oils were blended with lower melting point peanut oil DAG oil (PO-DAG-oil). The blend ratios for the three types of DAG-based shortenings were determined based on the solid fat content (SFC) of lard. Subsequently, 1 % of various emulsifiers were added, and the crystallization properties, rheological and textural characteristics, polymorphism, microstructure, water-absorbing capacity, and plasticity of the four shortening systems were examined. The emulsifiers found to be suitable for lard shortening, long chain fatty acid DAG (LCD-shortening), medium chain fatty acid DAG (MCD-shortening), and medium and long chain fatty acid DAG (MLCD-shortening) were Span60, PGFE, PGFE, and MAG, respectively. Cakes baked using DAG-based shortenings exhibited superior textural properties compared to those made with lard-based shortenings, supporting the application of high-melting-point DAG oils in shortening formulations.
  8. Zhang Z, Alomirah H, Cho HS, Li YF, Liao C, Minh TB, et al.
    Environ Sci Technol, 2011 Aug 15;45(16):7044-50.
    PMID: 21732633 DOI: 10.1021/es200976k
    Bisphenol A (BPA) is an industrial chemical used in the manufacture of polycarbonate plastics and epoxy resins. Due to the potential of this compound to disrupt normal endocrinal functions, concerns over human exposure to BPA have been raised. Although several studies have reported human exposure to BPA in Western nations, little is known about exposure in Asian countries. In this study, we determined total urinary BPA concentrations (free plus conjugated) in 296 urine samples (male/female: 153/143) collected from the general population in seven Asian countries, China, India, Japan, Korea, Kuwait, Malaysia, and Vietnam, using high-performance liquid chromatography (HPLC) tandem mass spectrometry (MS/MS). On the basis of urinary BPA concentrations, we estimated the total daily intake. The results indicated that BPA was detected in 94.3% of the samples analyzed, at concentrations ranging from <0.1 to 30.1 ng/mL. The geometric mean concentration of BPA for the entire sample set from seven countries was 1.20 ng/mL. The highest concentration of BPA was found in samples from Kuwait (median: 3.05 ng/mL, 2.45 μg/g creatinine), followed by Korea (2.17 ng/mL, 2.40 μg/g), India (1.71 ng/mL, 2.09 μg/g), Vietnam (1.18 ng/mL, 1.15 μg/g), China (1.10 ng/mL, 1.38 μg/g), Malaysia (1.06 ng/mL, 2.31 μg/g), and Japan (0.95 ng/mL, 0.58 μg/g). Among the five age groups studied (≤ 19, 20-29, 30-39, 40-49, and ≥ 50 years), the highest median concentration of BPA was found in urine samples from the age group of ≤ 19 years. There was no significant difference in BPA concentrations between genders (male and female) or domicile of residence (rural and urban). The estimated median daily intakes of BPA for the populations in Kuwait, Korea, India, China, Vietnam, Malaysia, and Japan were 5.19, 3.69, 2.90, 2.13, 2.01, 1.80, and 1.61 μg/day, respectively. The estimated daily intake of BPA in the seven Asian countries was significantly lower than the tolerable daily intake recommended by the U.S. Environmental Protection Agency. This is the first study to document the occurrence of and human exposure to BPA in several Asian countries.
  9. Yang T, Xiao Y, Zhang Z, Liang Y, Li G, Zhang M, et al.
    Sci Rep, 2018 09 28;8(1):14518.
    PMID: 30266999 DOI: 10.1038/s41598-018-32757-9
    Soft robots driven by stimuli-responsive materials have their own unique advantages over traditional rigid robots such as large actuation, light weight, good flexibility and biocompatibility. However, the large actuation of soft robots inherently co-exists with difficulty in control with high precision. This article presents a soft artificial muscle driven robot mimicking cuttlefish with a fully integrated on-board system including power supply and wireless communication system. Without any motors, the movements of the cuttlefish robot are solely actuated by dielectric elastomer which exhibits muscle-like properties including large deformation and high energy density. Reinforcement learning is used to optimize the control strategy of the cuttlefish robot instead of manual adjustment. From scratch, the swimming speed of the robot is enhanced by 91% with reinforcement learning, reaching to 21 mm/s (0.38 body length per second). The design principle behind the structure and the control of the robot can be potentially useful in guiding device designs for demanding applications such as flexible devices and soft robots.
  10. Zhang X, Zhao L, Xiang S, Sun Y, Wang P, Chen JJ, et al.
    J Ethnopharmacol, 2023 May 10;307:116243.
    PMID: 36791927 DOI: 10.1016/j.jep.2023.116243
    ETHNOPHARMACOLOGICAL RELEVANCE: Yishen Tongluo formula (YSTLF) is formulated based on traditional Chinese medicine theory for the treatment of Diabetic kidney disease (DKD) and has been shown to be effective in improving the symptoms of DKD according to the clinical observation.

    AIM OF THE STUDY: To explore the effect of YSTLF on DKD and figure out whether its effects were due to the regulation Sirt6/TGF-β1/Smad2/3 pathway and promoting degradation of TGF-β1.

    MATERIALS AND METHODS: The extract of YSTLF at 1, 2.5 and 5 g/kg was orally administered to C57BLKS/J (db/db) mice for 8 weeks and db/db mice were given valsartan as a positive control. The littermate db/m and db/db mice were given vehicle as the control and model group, respectively. Blood urea nitrogen and serum creatinine were detected and the urinary albumin excretion, urea albumin creatinine ratio was calculated. The histopathological change of renal tissues in each group was determined. Simultaneously, the levels of fibrosis-related proteins and messenger RNA (mRNA) in kidney and high glucose (HG)-induced SV40-MES-13 cells were detected. The roles of YSTLF in regulating of Sirt6/TGF-β1/Smad2/3 signaling pathway were investigated in HG-stimulated SV40-MES-13 cells and validated in db/db mice. Furthermore, the effect of YSTLF on TGF-β1 degradation was investigated in HG-stimulated SV40-MES-13 cells.

    RESULTS: YSTLF significantly improved the renal function in DKD mice. YSTLF dose-dependently attenuated pathological changes and suppressed the expression of type I collagen, alpha smooth muscle actin, type IV collagen, and fibronectin in vitro and in vivo, resulting in ameliorating of renal fibrosis. YSTLF positively regulated Sirt6 expression, while inhibited the activating of TGF-β1/Smad2/3 signaling pathway. TGF-β1 was steady expressed in HG-stimulated SV40-MES-13 cells, whereas was continuously degraded under YSTLF treatment.

    CONCLUSIONS: YSTLF significantly ameliorates renal damages and fibrosis may via regulating Sirt6/TGF-β1/Smad2/3 signaling pathway as well as promoting the degradation of TGF-β1.

  11. Wu J, Cai G, Fan Y, Arima K, Lin Y, Wong L, et al.
    Vaccines (Basel), 2023 Jan 11;11(1).
    PMID: 36680002 DOI: 10.3390/vaccines11010157
    Background: This study aimed to survey the attitudes toward COVID-19 vaccines and their acceptability among the Japanese public as soon as the United States Food and Drug Administration (FDA) authorized vaccines and their rollouts started around the world. Methods: An anonymous cross-sectional survey was conducted in Japan between 4 January and 5 March 2021. A questionnaire was administered to evaluate attitudes toward COVID-19 vaccines according to demographic characteristics, vaccine characteristics, and vaccine production. Results: A total of 1037 completed responses were received. More than half (63.5%) of the participants responded positively (extremely likely/likely) toward COVID-19 vaccines. The highest acceptance to be vaccinated was discovered among the youngest age group. As expected, participants who had never delayed acceptance or refused the vaccine in their history of vaccination had a significantly higher willingness to be vaccinated against COVID-19 (p < 0.001). Females (OR = 2.66, 95% CI: 1.99−3.58) and participants who had ever delayed acceptance or refuse the vaccine (OR = 3.49, 95% CI: 2.42−5.05) had higher odds of COVID-19 vaccine hesitancy. Participants with a postgraduate degree (OR = 0.64, 95% CI: 0.40−1.00) presented the highest willingness to be vaccinated against COVID-19. More than two-thirds (72.9%, 95% CI: 70.4%−75.8%) of the participants did not mind a booster dose required following primary vaccination. A total of 63.2% (95% CI: 60.0%−66.0%) of the participants only accepted a nearly 90% effective or above vaccine at preventing COVID-19. At the same, 86.4% (95% CI: 84.4%−88.4%) of the participants reported only accepting a vaccine with minor side effects. Conclusions: The moderate levels of COVID-19 vaccine acceptance found in the early phase of the pandemic demonstrate that it is important to improve the implementation of effective management for vaccine promotion and the acceptability of the vaccine to slow or delay transmission.
  12. Qiu C, Zhang Z, Li X, Sang S, McClements DJ, Chen L, et al.
    NPJ Sci Food, 2023 Jun 14;7(1):29.
    PMID: 37316567 DOI: 10.1038/s41538-023-00186-2
    In this study, composite nanoparticles consisting of zein and hydroxypropyl beta-cyclodextrin were prepared using a combined antisolvent co-precipitation/electrostatic interaction method. The effects of calcium ion concentration on the stability of the composite nanoparticles containing both curcumin and quercetin were investigated. Moreover, the stability and bioactivity of the quercetin and curcumin were characterized before and after encapsulation. Fluorescence spectroscopy, Fourier Transform infrared spectroscopy, and X-ray diffraction analyses indicated that electrostatic interactions, hydrogen bonding, and hydrophobic interactions were the main driving forces for the formation of the composite nanoparticles. The addition of calcium ions promoted crosslinking of the proteins and affected the stability of the protein-cyclodextrin composite particles through electrostatic screening and binding effects. The addition of calcium ions to the composite particles improved the encapsulation efficiency, antioxidant activity, and stability of the curcumin and quercetin. However, there was an optimum calcium ion concentration (2.0 mM) that provided the best encapsulation and protective effects on the nutraceuticals. The calcium crosslinked composite particles were shown to maintain good stability under different pH and simulated gastrointestinal digestion conditions. These results suggest that zein-cyclodextrin composite nanoparticles may be useful plant-based colloidal delivery systems for hydrophobic bio-active agents.
  13. Yang J, Gao Z, Yu Z, Hou Y, Tang D, Yan H, et al.
    PMID: 37599623 DOI: 10.1080/10408398.2023.2248244
    Aurones are a subclass of active flavonoids characterized with a scaffold of 2-benzylidene-3(2H)-benzofuranone. This type of chemicals are widely distributed in fruit, vegetable and flower, and contribute to human health. In this review, we summarize the natural aurones isolated from dietary plants. Their positive effects on immunomodulation, antioxidation, cancer prevention as well as maintaining the health status of cardiovascular, nervous system and liver organs are highlighted. The biosynthesis strategies of plant-derived aurones are elaborated to provide solutions for their limited natural abundance. The potential application of natural aurones in food coloration are also discussed. This paper combines the up-to-date information and gives a full image of dietary aurones.
  14. Wang W, Zhang H, Sandai D, Zhao R, Bai J, Wang Y, et al.
    Front Cell Dev Biol, 2023;11:1324213.
    PMID: 38161333 DOI: 10.3389/fcell.2023.1324213
    ATP-induced cell death has emerged as a captivating realm of inquiry with profound ramifications in the context of osteoporosis. This study unveils a paradigm-shifting hypothesis that illuminates the prospective involvement of ATP-induced cellular demise in the etiology of osteoporosis. Initially, we explicate the morphological attributes of ATP-induced cell death and delve into the intricacies of the molecular machinery and regulatory networks governing ATP homeostasis and ATP-induced cell death. Subsequently, our focus pivots towards the multifaceted interplay between ATP-induced cellular demise and pivotal cellular protagonists, such as bone marrow-derived mesenchymal stem cells, osteoblasts, and osteoclasts, accentuating their potential contributions to secondary osteoporosis phenotypes, encompassing diabetic osteoporosis, glucocorticoid-induced osteoporosis, and postmenopausal osteoporosis. Furthermore, we probe the captivating interplay between ATP-induced cellular demise and alternative modalities of cellular demise, encompassing apoptosis, autophagy, and necroptosis. Through an all-encompassing inquiry into the intricate nexus connecting ATP-induced cellular demise and osteoporosis, our primary goal is to deepen our comprehension of the underlying mechanisms propelling this malady and establish a theoretical bedrock to underpin the development of pioneering therapeutic strategies.
  15. Zhang Z, Jiang H, Chen G, Miao W, Lin Q, Sang S, et al.
    Food Chem, 2024 Apr 24;451:139477.
    PMID: 38678664 DOI: 10.1016/j.foodchem.2024.139477
    In this study, a combination of whey protein (hydrophilic coating) and polydopamine (crosslinking agent) was used to improve the stability and functionality of quercetin-loaded zein nanoparticles. There are two key benefits of the core-shell nanoparticles formed. First, the ability of the polydopamine to bind to both zein and whey protein facilitates the formation of a stable core-shell structure, thereby protecting quercetin from any pro-oxidants in the aqueous surroundings. Second, neutral and hydrophilic whey proteins were used for the surface coating of the nanoparticles to further enhance the sustained and slow release of quercetin, facilitating its sustained release into the body at a slow and steady rate. The results of this study will promote the innovative development of precise nutritional delivery systems for zein and provide a theoretical basis for the design and development of dietary supplements based on hydrophobic food nutrient molecules.
  16. Tong M, Liu P, Li C, Zhang Z, Sun W, Dong P, et al.
    J Chem Inf Model, 2024 Feb 12;64(3):785-798.
    PMID: 38262973 DOI: 10.1021/acs.jcim.3c01584
    The allosteric modulation of the homodimeric H10-03-6 protein to glycan ligands L1 and L2, and the STAB19 protein to glycan ligands L3 and L4, respectively, has been studied by molecular dynamics simulations and free energy calculations. The results revealed that the STAB19 protein has a significantly higher affinity for L3 (-11.38 ± 2.32 kcal/mol) than that for L4 (-5.51 ± 1.92 kcal/mol). However, the combination of the H10-03-6 protein with glycan L2 (1.23 ± 6.19 kcal/mol) is energetically unfavorable compared with that of L1 (-13.96 ± 0.35 kcal/mol). Further, the binding of glycan ligands L3 and L4 to STAB19 would result in the significant closure of the two CH2 domains of the STAB19 conformation with the decrease of the centroid distances between the two CH2 domains compared with the H10-03-6/L1/L2 complex. The CH2 domain closure of STAB19 relates directly to the formation of new hydrogen bonds and hydrophobic interactions between the residues Ser239, Val240, Asp265, Glu293, Asn297, Thr299, Ser337, Asp376, Thr393, Pro395, and Pro396 in STAB19 and glycan ligands L3 and L4, which suggests that these key residues would contribute to the specific regulation of STAB19 to L3 and L4. In addition, the distance analysis revealed that the EF loop in the H10-03-6/L1/L2 model presents a high flexibility and partial disorder compared with the stabilized STAB19/L3/L4 complex. These results will be helpful in understanding the specific regulation through the asymmetric structural characteristics in the CH2 and CH3 domains of the H10-03-6 and STAB19 proteins.
  17. Zhao Z, Gao Y, Sui W, Zhang Z, Feng L, Wang Z, et al.
    BMJ Open, 2024 Aug 17;14(8):e081485.
    PMID: 39153776 DOI: 10.1136/bmjopen-2023-081485
    OBJECTIVES: To seek a triple combination of biomarkers for early diagnosis of chronic kidney disease-mineral and bone metabolic disorder and to explore the diagnostic efficacy of β2-microglobulin, parathyroid hormone and blood urea nitrogen in chronic kidney disease-mineral and bone metabolic disorder.

    PARTICIPANTS: We collected medical records of 864 patients with chronic kidney disease (without direct contact with patients) and divided them into two groups based on the renal bone disease manifestations of all patients.

    PRIMARY AND SECONDARY OUTCOME MEASURES: There were 148 and 716 subjects in the Chronic kidney disease-mineral and bone metabolic disorder and the control groups, respectively. The aggregated data included basic information and various clinical laboratory indicators, such as blood lipid profile, antibody and electrolyte levels, along with renal function-related indicators.

    RESULTS: It was observed that most renal osteopathy occurs in the later stages of chronic kidney disease. In the comparison of two clinical laboratory indicators, 16 factors were selected for curve analysis and compared. We discovered that factors with high diagnostic values were β2-microglobulin, parathyroid hormone and blood urea nitrogen.

    CONCLUSIONS: The triple combination of β2-microglobulin+parathyroid hormone+blood urea nitrogen indicators can play the crucial role of a sensitive indicator for the early diagnosis of chronic kidney disease-mineral and bone metabolic disorder and in preventing or delaying the progress of chronic kidney disease-mineral and bone metabolic disorder.

  18. Zhang X, Wang J, Xiang S, Zhao L, Lv M, Duan Y, et al.
    Am J Chin Med, 2024;52(6):1795-1817.
    PMID: 39347955 DOI: 10.1142/S0192415X24500708
    Diabetic kidney disease (DKD) has become the primary cause of end-stage renal disease (ESRD), causing an urgent need for preventive strategies for DKD. Astragaloside I (ASI), a bioactive saponin extracted from Astragalus membranaceus (Fisch.) Bunge has been demonstrated to possess a variety of biological activities. This study investigates the therapeutic potential of ASI in DKD and the underlying molecular mechanism using db/db mice in vivo and high glucose (HG)-induced SV40-MES-13 cells in vitro. The results indicated that ASI significantly ameliorated renal dysfunction and mitigated the pathological alterations in the renal tissues of db/db mice. Moreover, ASI was found to reduce the levels of renal fibrosis makers and suppress the activation of TGF-β1/Smad2/3 pathway in both db/db mice and HG-induced SV40-MES-13 cells. Furthermore, ASI downregulated HDAC3 expression, upregulated Klotho expression, and enhanced Klotho release. ASI is directly bound to HDAC3, and the beneficial effects of ASI on Klotho/TGF-β1/Smad2/3-mediciated renal fibrosis in DKD were reversed by the HDAC3 agonist ITSA-1. In conclusion, ASI attenuates renal fibrosis in DKD, and may act through concurrently inhibiting HDAC3 and TGF-β1, thereby regulating HDAC3-mediciated Klotho/TGF-β1/Smad2/3 pathway.
  19. Xu X, Liu F, Cheng RC, Chen J, Xu X, Zhang Z, et al.
    Proc Biol Sci, 2015 Jun 07;282(1808):20142486.
    PMID: 25948684 DOI: 10.1098/rspb.2014.2486
    Living fossils are lineages that have retained plesiomorphic traits through long time periods. It is expected that such lineages have both originated and diversified long ago. Such expectations have recently been challenged in some textbook examples of living fossils, notably in extant cycads and coelacanths. Using a phylogenetic approach, we tested the patterns of the origin and diversification of liphistiid spiders, a clade of spiders considered to be living fossils due to their retention of arachnid plesiomorphies and their exclusive grouping in Mesothelae, an ancient clade sister to all modern spiders. Facilitated by original sampling throughout their Asian range, we here provide the phylogenetic framework necessary for reconstructing liphistiid biogeographic history. All phylogenetic analyses support the monophyly of Liphistiidae and of eight genera. As the fossil evidence supports a Carboniferous Euramerican origin of Mesothelae, our dating analyses postulate a long eastward over-land dispersal towards the Asian origin of Liphistiidae during the Palaeogene (39-58 Ma). Contrary to expectations, diversification within extant liphistiid genera is relatively recent, in the Neogene and Late Palaeogene (4-24 Ma). While no over-water dispersal events are needed to explain their evolutionary history, the history of liphistiid spiders has the potential to play prominently in vicariant biogeographic studies.
  20. Han Y, Bai J, Zhang Z, Wu T, Chen P, Sun G, et al.
    Sci Total Environ, 2019 Nov 10;690:748-759.
    PMID: 31302540 DOI: 10.1016/j.scitotenv.2019.06.508
    Many species of birds gradually adapt to urbanization and colonize cities successfully. However, their nest site selection and competitive relationship in an urban community remain little known. Understanding the impact of urbanization on birds and the competitive relationship has important implications for the conservation and management of wildlife in urban ecosystems. Here, we undertook a systematic study to quantify nests in all species of birds in an urbanizing area of Nanchang, China. A total of 363 nests were detected in surveys including 340 nests of 16 bird species and 23 unidentified species nests. We mainly analyzed 5 dominant breeding birds with a sample size of >10 during the two breeding seasons (From April to July in 2016 and 2017), which included the light-vented bulbul, Chinese blackbird, scaly-breasted munia, spotted dove and grey-capped greenfinch. Most birds (93.66%) nested in the tree of artificial green belts, which seems to be the best breeding habitat for urban birds. Our results suggested that birds' breeding success relies on the trade-off between the benefit and the expense of specific stresses from habitats. The nest site selection of birds is also affected by the life habit of urban predators. Furthermore, competition among species can influence their distributions and utilization of environmental resources when birds nest in cities. We confirmed that the niche differentiation of five bird species in an urban environment makes them coexist successfully by utilizing various resources.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links