Displaying publications 41 - 60 of 182 in total

Abstract:
Sort:
  1. Chang L, Chong WT, Wang X, Pei F, Zhang X, Wang T, et al.
    Environ Sci Process Impacts, 2021 May 26;23(5):642-663.
    PMID: 33889885 DOI: 10.1039/d1em00002k
    Nowadays, PM2.5 concentrations greatly influence indoor air quality in subways and threaten passenger and staff health because PM2.5 not only contains heavy metal elements, but can also carry toxic and harmful substances due to its small size and large specific surface area. Exploring the physicochemical and distribution characteristics of PM2.5 in subways is necessary to limit its concentration and remove it. At present, there are numerous studies on PM2.5 in subways around the world, yet, there is no comprehensive and well-organized review available on this topic. This paper reviews the nearly twenty years of research and over 130 published studies on PM2.5 in subway stations, including aspects such as concentration levels and their influencing factors, physicochemical properties, sources, impacts on health, and mitigation measures. Although many determinants of station PM2.5 concentration have been reported in current studies, e.g., the season, outdoor environment, and station depth, their relative influence is uncertain. The sources of subway PM2.5 include those from the exterior (e.g., road traffic and fuel oil) and the interior (e.g., steel wheels and rails and metallic brake pads), but the proportion of these sources is also unknown. Control strategies of PM mainly include adequate ventilation and filtration, but these measures are often inefficient in removing PM2.5. The impacts of PM2.5 from subways on human health are still poorly understood. Further research should focus on long-term data collection, influencing factors, the mechanism of health impacts, and PM2.5 standards or regulations.
  2. Yan L, Zhang M, Wang M, Guo Y, Zhang X, Xi J, et al.
    J Nanosci Nanotechnol, 2020 03 01;20(3):1504-1510.
    PMID: 31492313 DOI: 10.1166/jnn.2020.17350
    This research has been accomplished using the advanced selective laser melting (SLM) technique as well as HIP post-treatment in order to improve mechanical properties and biocompatibility of Mg- Ca-Sr alloy. Through this research it becomes clearly noticeable that the Mg-1.5Ca-xSr (x = 0.6, 2.1, 2.5) alloys with Sr exhibited better mechanical properties and corrosion potentials. This is more particular with the Mg-1.5Ca-2.5Sr alloy after HIP post-treatment allowing it to provide a desired combination of degradation and mechanical behavior for orthopedic fracture fixation during a desired treatment period. In vivo trials, there was a clear indication and exhibition that this Mg-1.5Ca-2.5Sr alloy screw can completely dissolve in miniature pig's body which leads to an acceleration in growth of bone tissues. Mg-Ca-Sr alloy proved potential candidate for use in orthopedic fixation devices through Our results concluded that Mg-Ca-Sr alloy are potential candidate for use in orthopedic fixation devices through mechanical strength and biocompatibility evaluations (in vitro or In vivo).
  3. Li R, Ru Y, Wang Z, He X, Kong KW, Zheng T, et al.
    Molecules, 2021 Jul 24;26(15).
    PMID: 34361630 DOI: 10.3390/molecules26154472
    In this study, we aimed to investigate the chemical components and biological activities of Musella lasiocarpa, a special flower that is edible and has functional properties. The crude methanol extract and its four fractions (petroleum ether, ethyl acetate, n-butanol, and aqueous fractions) were tested for their total antioxidant capacity, followed by their α-glucosidase, acetylcholinesterase, and xanthine oxidase inhibitory activities. Among the samples, the highest total phenolic and total flavonoid contents were found in the ethyl acetate (EtOAc) fraction (224.99 mg GAE/g DE) and crude methanol extract (187.81 mg QE/g DE), respectively. The EtOAc fraction of Musella lasiocarpa exhibited the strongest DPPH· scavenging ability, ABTS·+ scavenging ability, and α-glucosidase inhibitory activity with the IC50 values of 22.17, 12.10, and 125.66 μg/mL, respectively. The EtOAc fraction also showed the strongest ferric reducing antioxidant power (1513.89 mg FeSO4/g DE) and oxygen radical absorbance capacity ability (524.11 mg Trolox/g DE), which were higher than those of the control BHT. In contrast, the aqueous fraction demonstrated the highest acetylcholinesterase inhibitory activity (IC50 = 10.11 μg/mL), and the best xanthine oxidase inhibitory ability (IC50 = 5.23 μg/mL) was observed from the crude methanol extract as compared with allopurinol (24.85 μg/mL). The HPLC-MS/MS and GC-MS analyses further revealed an impressive arsenal of compounds, including phenolic acids, fatty acids, esters, terpenoids, and flavonoids, in the most biologically active EtOAc fraction. Taken together, this is the first report indicating the potential of Musella lasiocarpa as an excellent natural source of antioxidants with possible therapeutic, nutraceutical, and functional food applications.
  4. Sun XY, Ma KN, Bai Y, Liu RD, Long SR, Zhang X, et al.
    Trop Biomed, 2021 Sep 01;38(3):420-434.
    PMID: 34608116 DOI: 10.47665/tb.38.3.085
    Trichinellosis is an important zoonotic parasitic disease worldwide and is principally caused by ingesting animal meat containing Trichinella infective larvae. Aspartyl aminopeptidase is an intracytoplasmic metalloproteinase that specifically hydrolyzes the N-terminus of polypeptides free of acidic amino acids (aspartic acid and glutamate), and plays an important role in the metabolism, growth and development of organisms. In this study, a novel T. spiralis aspartyl aminopeptidase (TsAAP) was cloned and expressed, and its biological properties and roles in worm growth and development were investigated. The results revealed that TsAAP transcription and expression in diverse T. spiralis stages were detected by RT-PCR and Western blotting, and primarily localized at cuticle, stichosome and intrauterine embryos of this nematode by immunofluorescence test. rTsAAP has the enzymatic activity of native AAP to hydrolyze the substrate H-Glu-pNA. There was a specific binding between rTsAAP and murine erythrocyte, and the binding site was localized in erythrocyte membrane proteins. Silencing of TsAAP gene by specific dsRNA significantly reduced the TsAAP expression, enzymatic activity, intestinal worm burdens and female fecundity. The results demonstrated that TsAAP participates in the growth, development and fecundity of T. spiralis and it might be a potential target molecule for anti-Trichinella vaccines.
  5. Chen Y, Huang J, Yeap ZQ, Zhang X, Wu S, Ng CH, et al.
    Spectrochim Acta A Mol Biomol Spectrosc, 2018 Jun 15;199:271-282.
    PMID: 29626818 DOI: 10.1016/j.saa.2018.03.061
    Anoectochilus roxburghii (Wall.) Lindl. (Orchidaceae) is a precious traditional Chinese medicinal herb and has been perennially used to treat various illness. However, there were unethical sellers who adulterated wild A. roxburghii with tissue cultured and cultivated ones. Therefore, there is an urgent need for an effective authentication method to differentiate between these different types of A. roxburghii. In this research, the infrared spectroscopic tri-step identification approach including Fourier transform infrared spectroscopy (FT-IR), Second derivative infrared spectra (SD-IR) and two-dimensional correlation infrared spectra (2D-IR) was used to develop a simple and rapid method to discriminate between wild, cultivated and tissue cultivated A. roxburghii plant. Through this study, all three types of A. roxburghii plant were successfully identified and discriminated through the infrared spectroscopic tri-step identification method. Besides that, all the samples of wild, cultivated and tissue cultivated A. roxburghii plant were analysed with the Soft Independent Modelling of Class Analogy (SIMCA) pattern recognition technique to test and verify the experimental results. The results showed that the three types of A. roxburghii can be discriminated clearly as the recognition rate was 100% for all three types and the rejection rate was more than 60%. 70% of the validated samples were also identified correctly by the SIMCA model. The SIMCA model was also validated by comparing 70 standard herbs to the model. As a result, it was demonstrated that the macroscopic IR fingerprint method and the classification analysis could discriminate not only between the A. roxburghi samples and the standard herbs, it could also distinguish between the three different types of A. roxburghi plant in a direct, rapid and holistic manner.
  6. Yang F, Guo KX, Yang DQ, Liu RD, Long SR, Zhang X, et al.
    Trop Biomed, 2020 Jun 01;37(2):458-470.
    PMID: 33612815
    A T. spiralis serine protease 1.2 (TsSP1.2) was identified in the muscle larvae (ML) and intestinal larvae surface/excretory-secretory (ES) proteins by immunoproteomics. The aim of this study was to determine the TsSP1.2 function in the process of T. spiralis intrusion, growth and reproduction by using RNA interference (RNAi). RNAi was used to silence the expression of TsSP1.2 mRNA and protein in the nematode. On 2 days after the ML were electroporated with 2 µM of TsSP1.2-specific siRNA 534, TsSP1.2 mRNA and protein expression declined in 56.44 and 84.48%, respectively, compared with untreated ML. Although TsSP1.2 silencing did not impair worm viability, larval intrusion of intestinal epithelium cells (IEC) was suppressed by 57.18% (P < 0.01) and the suppression was siRNA-dose dependent (r = 0.976). Infection of mice with siRNA 534 transfected ML produced a 57.16% reduction of enteral adult burden and 71.46% reduction of muscle larva burden (P < 0.05). Moreover, silencing of TsSP1.2 gene in ML resulted in worm development impediment and reduction of female fertility. The results showed that silencing of TsSP1.2 by RNAi inhibited larval intrusion and development, and reduced female fecundity. TsSP1.2 plays a crucial role for worm invasion and development in T. spiralis life cycle, and is a potential vaccine/drug target against Trichinella infection.
  7. Hong X, Liu SN, Xu FF, Han LL, Jiang P, Wang ZQ, et al.
    Trop Biomed, 2020 Mar 01;37(1):237-250.
    PMID: 33612735
    Spirometra larvae are etiological agents of human sparganosis. However, the systematics of spirometrid cestodes has long been controversial. In order to determine the current knowledge on the evolution and genetic structure of Spirometra, an exhaustive population diversity analysis of spirometrid cestodes using the mitochondrial gene: cytochrome c oxidase subunit 1 (cox1) was performed. All publicly available cox1 sequences available in the GenBank and 127 new sequencing genes from China were used as the dataset. The haplotype identify, network, genetic differentiation and phylogenetic analysis were conducted successively. A total of 488 sequences from 20 host species, representing four spirometrid tapeworms (S. decipiens, S. ranarum, S. erinaceieuropaei and Sparganum proliferum) and several unclassified American and African isolates from 113 geographical locations in 17 countries, identified 45 haplotypes. The genetic analysis revealed that there are four clades of spirometrid cestodes: Clade 1 (Brazil + USA) and Clade 2 (Argentina + Venezuela) included isolates from America, Clade 3 contained African isolates and one Korean sample, and the remainders from Asia and Australia belonged to Clade 4; unclassified Spirometra from America and Africa should be considered the separate species within the genus; and the taxonomy of two Korea isolates (S. erinaceieuropaei KJ599680 and S. decipiens KJ599679) was still ambiguous and needs to be further identified. In addition, the demographical analyses supported population expansion for the total spirometrid population. In summary, four lineages were found in the spirometrid tapeworm, and further investigation with deeper sampling is needed to elucidate the population structure.
  8. Chui KT, Gupta BB, Liu RW, Zhang X, Vasant P, Thomas JJ
    Sensors (Basel), 2021 Sep 25;21(19).
    PMID: 34640732 DOI: 10.3390/s21196412
    Road traffic accidents have been listed in the top 10 global causes of death for many decades. Traditional measures such as education and legislation have contributed to limited improvements in terms of reducing accidents due to people driving in undesirable statuses, such as when suffering from stress or drowsiness. Attention is drawn to predicting drivers' future status so that precautions can be taken in advance as effective preventative measures. Common prediction algorithms include recurrent neural networks (RNNs), gated recurrent units (GRUs), and long short-term memory (LSTM) networks. To benefit from the advantages of each algorithm, nondominated sorting genetic algorithm-III (NSGA-III) can be applied to merge the three algorithms. This is named NSGA-III-optimized RNN-GRU-LSTM. An analysis can be made to compare the proposed prediction algorithm with the individual RNN, GRU, and LSTM algorithms. Our proposed model improves the overall accuracy by 11.2-13.6% and 10.2-12.2% in driver stress prediction and driver drowsiness prediction, respectively. Likewise, it improves the overall accuracy by 6.9-12.7% and 6.9-8.9%, respectively, compared with boosting learning with multiple RNNs, multiple GRUs, and multiple LSTMs algorithms. Compared with existing works, this proposal offers to enhance performance by taking some key factors into account-namely, using a real-world driving dataset, a greater sample size, hybrid algorithms, and cross-validation. Future research directions have been suggested for further exploration and performance enhancement.
  9. Zhang X, Chen X, Jin J, Gong M, He Q, Li S, et al.
    J Chromatogr Sci, 2021 Oct 29;59(10):941-948.
    PMID: 33728454 DOI: 10.1093/chromsci/bmab028
    Capilliposide B (CPS-B) and Capilliposide C (CPS-C), as the key components in Lysimachia capillipes Hemsl., increasingly aroused the interest and research concern of many researchers due to the good bioactivities. Nowadays, the reference standards of CPS-B and CPS-C yield were very limited. Due to the deficit of reference standards, the determination could be difficult to carry out, and the quality control and evaluation would be restrained afterwards. To solve this urgent problem, a quantitative analysis of multi-components by single-marker (QAMS) method was proposed and established based on high-performance liquid-chromatography tandem evaporative light-scattering detector. In this QAMS method, the content of the two bioactive components could be calculated by buddlejasaponin IV, which is applied as an external standard and readily obtained. And the methodological experiments were evaluated and indicated accuracy, stability and feasibility of this QAMS method. Therefore, in this study, this built method would properly meet the requirement of determination of CPS-B, CPS-C and quality control of the L. capillipes Hemsl. plant.
  10. Zhang X, Sun J, Chen F, Qi H, Chen L, Sung YY, et al.
    Microb Genom, 2021 05;7(5).
    PMID: 33952389 DOI: 10.1099/mgen.0.000549
    The virulence of Vibrio parahaemolyticus is variable depending on its virulence determinants. A V. parahaemolyticus strain, in which the virulence is governed by the pirA and pirB genes, can cause acute hepatopancreatic necrosis disease (AHPND) in shrimps. Some V. parahaemolyticus that are non-AHPND strains also cause shrimp diseases and result in huge economic losses, while their pathogenicity and pathogenesis remain unclear. In this study, a non-AHPND V. parahaemolyticus, TJA114, was isolated from diseased Penaeus vannamei associated with a high mortality. To understand its virulence and adaptation to the external environment, whole-genome sequencing of this isolate was conducted, and its phenotypic profiles including pathogenicity, growth characteristics and nutritional requirements were investigated. Shrimps following artificial infection with this isolate presented similar clinical symptoms to the naturally diseased ones and generated obvious pathological lesions. The growth characteristics indicated that the isolate TJA114 could grow well under different salinity (10-55 p.p.t.), temperature (23-37 °C) and pH (6-10) conditions. Phenotype MicroArray results showed that this isolate could utilize a variety of carbon sources, amino acids and a range of substrates to help itself adapt to the high hyperosmotic and alkaline environments. Antimicrobial-susceptibility test showed that it was a multidrug-resistant bacterium. The whole-genomic analysis showed that this V. parahaemolyticus possessed many important functional genes associated with multidrug resistance, stress response, adhesions, haemolysis, putative secreted proteases, dedicated protein secretion systems and a variety of nutritional metabolic mechanisms. These annotated functional genes were confirmed by the phenotypic profiles. The results in this study indicated that this V. parahaemolyticus isolate possesses a high pathogenicity and strong environmental adaptability.
  11. Zhang X, Zhu N, Li Z, Xie X, Liu T, Ouyang G
    Sci Rep, 2021 11 05;11(1):21750.
    PMID: 34741095 DOI: 10.1038/s41598-021-01188-4
    There are no studies assessing the epidemiology and burden of decubitus ulcers at global, regional, and national levels. We aim to report this issue from 1990 to 2019 by extracting data from the Global Burden of Disease Study (GBD) 2019 and stratifying it by age, gender, and socio-demographic index (SDI). Globally, the number of prevalent cases of decubitus ulcers in 2019 is 0.85 (95% UI 0.78 to 0.94) million. The age-standardized rates of prevalence, incidence, and years lived with disability (YLDs) in 2019 are 11.3 (95% UI 10.2 to 12.5), 41.8 (37.8 to 46.2), and 1.7 (1.2 to 2.2) per 100,000 population, and compared with 1990, it has decreased by 10.6% (95% UI 8.7% to 12.3%), 10.2% (8.2 to 11.9%), and 10.4% (8.1 to 12.5%), respectively. In addition, the global prevalence rate of decubitus ulcers increases with age, peaking at the > 95 age group among men and women. At the regional and national levels, we observe a positive correlation between age-standardized YLDs and SDI. Malaysia, Saudi Arabia, and Thailand experienced the most significant increases in age-standardized prevalence rates at the national level. Finally, we concluded that the age-standardized prevalence, incidence, and YLDs rates of decubitus ulcer declined from 1990 to 2019, with significant regional differences. In order to monitor the dynamic changes of decubitus ulcers burden, it is recommended to improve the quality of decubitus ulcer health data in all regions and countries.
  12. Xu Y, Li H, Wang B, Gu L, Gao Y, Fan Y, et al.
    Urol J, 2021 Oct 04;18(6):618-622.
    PMID: 34606083 DOI: 10.22037/uj.v18i.6629
    PURPOSE: To compare the treatment outcomes of robotic retroperitoneal lymph node dissection (R-RPLND) versus laparoscopic RPLND (L-RPLND) for clinical stage I non-seminomatous germ cell testicular tumors (NSGCTs).

    MATERIALS AND METHODS: We retrospectively reviewed the data of patients with stage I NSGCTs who underwent robotic or laparoscopic RPLND between 2008 and 2017. Perioperative data and oncologic outcomes were reviewed and compared between the two groups. Progression-free survival was analyzed using Kaplan-Meier survival curves and compared between two groups.

    RESULTS: A total of 31 and 28 patients underwent R-RPLND and L-RPLND respectively. The preoperative characteristics of the patients were comparable in the two groups. Patients in R-RPLND group had significantly shorter median operative time (140 vs. 175 minutes, P < .001), a shorter median duration to surgical drain removal (2 vs. 4 days, P = .002) and a shorter median postoperative hospital stay (5 vs. 6 days, P = .001). There were no statistical differences in intra- and post-operative complication rate between the groups and the oncologic outcomes were similar in the two groups.

    CONCLUSION: In expert hands, R-RPLND and L-RPLND were comparable in oncological parameter and morbidity rate; R-RPLND showed superiority in operation duration, median days to surgical drain removal and postoperative hospital stay for stage I NSGCTs. Multicenter and randomized studies with good power of study and sufficient follow-up duration are required to validate our result.

  13. Imafuku S, Zheng M, Tada Y, Zhang X, Theng C, Thevarajah S, et al.
    J Dermatol, 2018 Jul;45(7):805-811.
    PMID: 29740870 DOI: 10.1111/1346-8138.14338
    A working group of dermatologists in Asian countries assessed the current status of psoriatic management in the region to prepare a consensus report on topical treatment in mild to moderate plaque psoriasis. Even though the association of psoriasis with systemic comorbidities is increasingly acknowledged, psoriasis is still lower in health-care priority lists in the region. The psychosocial impact of psoriasis may be greater in Asian countries due to cultural norms and social discrimination. Non-adherence to treatment is also common among Asians. The current care given to patients with mild to moderate psoriasis needs to be streamlined, enhanced and organized with a patient-centered care approach to achieve better outcomes. A comprehensive assessment of the disease severity and its impact on a patient's life is required before initiating treatment. Education and active involvement of the patient in the treatment plan is an important part of psoriatic management. It is recommended to personalize topical treatment to meet the needs of the patient, depending on disease severity, psychosocial impact, the patient's expectations and, more importantly, the patient's willingness and ability to actively follow the treatment procedure. Fixed-dose combination of corticosteroid and vitamin D analogs is the preferred topical medication for both initial and maintenance phases of treatment. The fast containment of the disease is the goal of the initial phase of 4-8 weeks and it demands a potent fast-acting topical therapy. Satisfactory control of the disease and prevention of relapses should be achieved during the maintenance phase with twice a week or weekend applications.
  14. Dai K, Wei Y, Jiang S, Xu F, Wang H, Zhang X, et al.
    Foods, 2021 Dec 31;11(1).
    PMID: 35010225 DOI: 10.3390/foods11010099
    Thinned peach polyphenols (TPPs) were extracted by ultrasonic disruption and purified using macroporous resin. Optimized extraction conditions resulted in a TPPs yield of 1.59 ± 0.02 mg GAE/g FW, and optimized purification conditions resulted in a purity of 43.86% with NKA-9 resin. TPPs composition was analyzed by UPLC-ESI-QTOF-MS/MS; chlorogenic acid, catechin, and neochlorogenic acid were the most abundant compounds in thinned peaches. Purified TPPs exhibited scavenging activity on DPPH, ABTS, hydroxyl radical, and FRAP. TPPs inhibited α-amylase and α-glucosidase by competitive and noncompetitive reversible inhibition, respectively. TPPs also exhibited a higher binding capacity for bile acids than cholestyramine. In summary, TPPs from thinned peaches are potentially valuable because of their high antioxidant, hypoglycemic, and hypolipidemic capacities, and present a new incentive for the comprehensive utilization of thinned peach fruit.
  15. Fu J, Zhang X, Li H, Chen B, Ye S, Zhang N, et al.
    J Hazard Mater, 2022 Mar 15;426:128088.
    PMID: 34959211 DOI: 10.1016/j.jhazmat.2021.128088
    Phenol is one of the major hazardous organic compounds in industrial wastewater. In this work, a highly active Pt/TiO2 catalyst for catalytic wet air oxidation (CWAO) of phenol was obtained by supporting pre-synthesized Pt on TiO2. During the followed hydrogen reduction, strong hydrogen spillover occurred without the migration of TiO2 onto Pt. The reduced support then enhanced the electron transfer from TiO2 to Pt, increasing the percentage of partially negative Pt (Ptδ-), which has been confirmed by XPS. The strong EMSI made the obtained catalyst far more active than Pt/TiO2 prepared by impregnation method. The electron-enriched Pt/TiO2 achieved total organic carbon (TOC) conversion of 88.8% and TOF 149 h-1 at 100 °C and 2 MPa O2, while conventional Pt/TiO2 gave TOC conversion of 39.5% and TOF 41 h-1 for CWAO of phenol. Our work indicates that the enhancement of EMSI between metal and support can be an effective approach to develop highly active catalysts for phenol treatment.
  16. Sun C, Song G, Pan Z, Tu M, Kharaziha M, Zhang X, et al.
    Bioresour Technol, 2023 Jan;368:128356.
    PMID: 36414144 DOI: 10.1016/j.biortech.2022.128356
    The valorization of organosolv pretreatment (OP) is a required approach to the industrialization of the current enzyme-mediated lignocellulosic biorefinery. Recent literature has demonstrated that the solvolysis happening in the OP can modify the soluble components into value-added active compounds, namely organosolv modified lignin (OML) and organosolv modified sugars (OMSs), in addition to protecting them against excessive degradation. Among them, the OML is coincidental with the "lignin-first" strategy that should render a highly reactive lignin enriched with β-O-4 linkages and less condensed structure by organosolv grafting, which is desirable for the transformation into phenolic compounds. The OMSs are valuable glycosidic compounds mainly synthesized by trans-glycosylation, which can find potential applications in cosmetics, foods, and healthcare. Therefore, a state-of-the-art OP holds a big promise of lowering the process cost by the valorization of these active compounds. Recent advances in organosolv modified components are reviewed, and perspectives are made for addressing future challenges.
  17. Yao M, Guo X, Shao X, Wei Y, Zhang X, Wang H, et al.
    Food Chem Toxicol, 2023 May;175:113725.
    PMID: 36925041 DOI: 10.1016/j.fct.2023.113725
    Lead (Pb) can pollute the environment and food through air, water and other means, resulting in human exposure to lead pollution, and there is no threshold level of lead toxicity, even small doses of lead will have a range of harmful effects in humans. This study demonstrates for the first time that dietary addition of soluble dietary fiber (SDF) from Prunus persica dregs reduces lead bioaccumulation in mice, and eliminates lead through feces. Compared with lead-exposed mice, SDF supplementation effectively prevented lead-induced changes in colon tissue, and increased expression of tight junction proteins (ZO-1 and occludin). We analyzed the effects of SDF on gut microbiota and metabolites by a combination of 16S rRNA high-throughput sequencing and untargeted metabolomics. The results showed that SDF altered lead-induced perturbations in the layout and structure of the gut microbiota, including increased Desulfovibrio and Alistipes abundance and decreased Bacteroidetes abundance. Meanwhile, we also provide evidence that SDF supplementation alters the levels of amino acids, bile acids, and lipids in the gut, and that these metabolites are closely associated with microbiota with good lead binding capacity. Therefore, we speculate that SDF has the potential to provide a protective effect against intestinal damage by promoting lead excretion.
  18. Cui Z, Cui S, Qin L, An Y, Zhang X, Guan J, et al.
    Asian J Pharm Sci, 2023 Sep;18(5):100848.
    PMID: 37881796 DOI: 10.1016/j.ajps.2023.100848
    Virus-capsid mimicking mucus-permeable nanoparticles are promising oral insulin carriers which surmount intestinal mucus barrier. However, the impact of different virus-capsid mimicking structure remains unexplored. In this study, utilizing biotin grafted chitosan as the main skeleton, virus-mimicking nanoparticles endowed with biologic-shell (streptavidin coverage) and polymeric-shell (hyaluronic acid/alginate coating) were designed with insulin as a model drug by self-assembly processes. It was demonstrated that biologic-shell mimicking nanoparticles exhibited a higher intestinal trans-mucus (>80%, 10 min) and transmucosal penetration efficiency (1.6-2.2-fold improvement) than polymeric-shell counterparts. Uptake mechanism studies revealed caveolae-mediated endocytosis was responsible for the absorption of biologic-shell mimicking nanoparticles whereas polymeric-shell mimicking nanoparticles were characterized by clathrin-mediated pathway with anticipated lysosomal insulin digestion. Further, in vivo hypoglycemic study indicated that the improved effect of regulating blood sugar levels was virus-capsid structure dependent out of which biologic-shell mimicking nanoparticles presented the best performance (5.1%). Although the findings of this study are encouraging, much more work is required to meet the standards of clinical translation. Taken together, we highlight the external structural dependence of virus-capsid mimicking nanoparticles on the muco-penetrating and uptake mechanism of enterocytes that in turn affecting their in vivo absorption, which should be pondered when engineering virus-mimicking nanoparticles for oral insulin delivery.
  19. Lin X, Lee SY, Ni J, Zhang X, Hu X, Zou P, et al.
    Int J Mol Sci, 2023 Oct 13;24(20).
    PMID: 37894819 DOI: 10.3390/ijms242015138
    Bougainvillea is popular in ornamental horticulture for its colorful bracts and excellent adaptability, but the complex genetic relationship among this genus is fuzzy due to limited genomic data. To reveal more genomic resources of Bougainvillea, we sequenced and assembled the complete chloroplast (cp) genome sequences of Bougainvillea spectabilis 'Splendens'. The cp genome size was 154,869 bp in length, containing 86 protein-coding genes, 38 tRNAs, and eight rRNAs. Cp genome comparison across 12 Bougainvillea species (B. spectabilis, B. glabra, B. peruviana, B. arborea, B. praecox, B. stipitata, B. campanulata, B. berberidifolia, B. infesta, B. modesta, B. spinosa, and B. pachyphylla) revealed five mutational hotspots. Phylogenetic analysis suggested that B. spectabilis published previously and B. glabra clustered into one subclade as two distinct groups, sister to the subclade of B. spectabilis 'Splendens'. We considered the phylogeny relationships between B. spectabilis and B. glabra to be controversial. Based on two hypervariable regions and three common plastid regions, we developed five molecular markers for species identification in Bougainvillea and applied them to classify 53 ornamental Bougainvillea cultivars. This study provides a valuable genetic resource for Bougainvillea breeding and offers effective molecular markers to distinguish the representative ornamental species of Bougainvillea.
  20. Sun C, Lee WG, Ma Q, Zhang X, Zhao Z, Cai X
    J Orthop Surg Res, 2023 Aug 08;18(1):586.
    PMID: 37553600 DOI: 10.1186/s13018-023-04023-w
    BACKGROUND: The positioning of implant components for total hip arthroplasty (THA) is essential for joint stability, polyethylene liner wear, and range of motion. One potential benefit of the direct anterior approach (DAA) for THA is the ability to use intraoperative fluoroscopy for acetabular cup positioning and limb-length evaluation. Previous studies comparing intraoperative fluoroscopy with no fluoroscopy during DAA have reported conflicting results. This meta-analysis aimed to evaluate whether intraoperative fluoroscopy improves component positioning compared to no fluoroscopy during direct anterior total hip arthroplasty.

    METHODS: A systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines was conducted. We searched Web of Science, EMBASE, PubMed, Cochrane Controlled Trials Register, Cochrane Library, Highwire, CBM, CNKI, VIP, and Wanfang database in May 2023 to identify studies involving intraoperative fluoroscopy versus no fluoroscopy during direct anterior total hip arthroplasty. Finally, we identified 1262 hips assessed in seven studies.

    RESULTS: There were no significant differences in terms of acetabular cup inclination angle (ACIA, P = 0.21), ACIA within safe zone rate (P = 0.97), acetabular cup anteversion angle (ACAA, P = 0.26); ACAA within safe zone rate (P = 0.07), combined safe zone rate (P = 0.33), and limb-length discrepancy (LLD, P = 0.21) between two groups.

    CONCLUSION: Even though intraoperative fluoroscopy was not related to an improvement in cup location or LDD. With fewer experienced surgeons, the benefit of intraoperative fluoroscopy might become more evident. More adequately powered and well-designed long-term follow-up studies were required to determine whether the application of the intraoperative fluoroscopy for direct anterior total hip arthroplasty will have clinical benefits and improve the survival of prostheses.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links