METHODS AND ANALYSIS: In this 12-week randomised double-blinded placebo-controlled trial for the effects of dietary TT supplementation in postmenopausal women, postmenopausal women aged 45 years and older with at least 1 year after menopause and bone mineral density T-score at the spine and/or hip 2.5 or more below the reference values will be randomly assigned to 3 daily supplements: (1) placebo group receiving 860 mg olive oil, (2) low TT group receiving 430 mg of 70% pure TTs (containing 300 mg TT) and (3) high TT group receiving 860 mg of 70% pure TTs (600 mg TT). The primary outcome measure will be urinary N-terminal telopeptide. The secondary outcome measures will be serum bone-specific alkaline phosphatase, receptor activator of nuclear factor-κB ligand, osteoprotegerin, urinary 8-hydroxy-2'-deoxyguanosine and quality of life. At 0, 6 and 12 weeks, the following will be assessed: (1) primary and secondary outcome measures; (2) serum TT and tocopherol concentrations; (3) physical activity and food frequency questionnaires. Liver function will be monitored every 6 weeks for safety. 'Intent-to-treat' principle will be employed for data analysis. A model of repeated measurements with random effect error terms will be applied. Analysis of covariance, χ2 analysis and regression will be used for comparisons.
ETHICS AND DISSEMINATION: This study was approved by the Bioethics Committee of the Texas Tech University Health Sciences Center. The findings of this trial will be submitted to a peer-reviewed journal in the areas of bone or nutrition and international conferences.
TRIAL REGISTRATION NUMBER: NCT02058420; results.
METHODS: Thirty-two female Wistar rats were randomly divided into four groups: Sham-operated (Sham), ovariectomized control (OVXC), ovariectomized with Labisia pumila var. alata (LPva) and ovariectomized with ERT (Premarin) (ERT). The LPva and ERT were administered via daily oral gavages at doses of 17.5 mg/kg and 64.5 μg/kg, respectively. Following two months of treatment, the rats were euthanized and the gene expressions of BMP-2, OPG, RANKL and MCSF in the femoral bones were measured using a branch - DNA technique.
RESULTS: The RANKL gene expression was increased while the OPG and BMP-2 gene expressions were reduced in the OVXC group compared to the SHAM group. There were no significant changes in the MCSF gene expressions among the groups. Treatment with either LPva or ERT was able to prevent these ovariectomy-induced changes in the gene expressions in ovariectomized rats with similar efficacy.
CONCLUSION: LPva may protect bone against estrogen deficiency-induced changes by regulating the RANKL, OPG and BMP-2 gene expressions.
METHODS: Thirty female Sprague-Dawley rats weighing 200-250 g were assigned to: (i) a sham-operated group that was given a normal saline; (ii) an ovariectomized control group that was given a normal saline; or (iii) an ovariectomized + estrogen (100 mg/kg/day) group that was treated with conjugated equine estrogen. The right femur of all rats was fractured, and a Kirschner wire was inserted six weeks post-ovariectomy. Treatment with estrogen was given for another six weeks post-fracture. At the end of the study, blood samples were taken, and the right femur was harvested and subjected to biomechanical strength testing.
RESULTS: The percentage change in the plasma TGF-β1 level before treatment was significantly lower in the ovariectomized control and estrogen groups when compared with the sham group (p<0.001). After six weeks of treatment, the percentage change in the plasma TGF-β1 level in the estrogen group was significantly higher compared with the level in the ovariectomized control group (p = 0.001). The mean ultimate force was significantly increased in the ovariectomized rats treated with estrogen when compared with the ovariectomized control group (p = 0.02).
CONCLUSION: These data suggest that treatment with conjugated equine estrogen enhanced the strength of the healed bone in estrogen-deficient rats by most likely inducing the expression of TGF-β1.
OBJECTIVES: To observe the radiological changes in fracture calluses following administration of a Piper sarmentosum extract during an estrogen-deficient state.
METHODS: A total of 24 female Sprague-Dawley rats (200-250 g) were randomly divided into 4 groups: (i) the sham-operated group; (ii) the ovariectomized-control group; (iii) the ovariectomized + estrogen-replacement therapy (ovariectomized-control + estrogen replacement therapy) group, which was supplemented with estrogen (100 μg/kg/day); and (iv) the ovariectomized + Piper sarmentosum (ovariectomized + Piper sarmentosum) group, which was supplemented with a water-based Piper sarmentosum extract (125 mg/kg). Six weeks after an ovariectomy, the right femora were fractured at the mid-diaphysis, and a K-wire was inserted. Each group of rats received their respective treatment for 6 weeks. Following sacrifice, the right femora were subjected to radiological assessment.
RESULTS: The mean axial callus volume was significantly higher in the ovariectomized-control group (68.2 ± 11.74 mm³) than in the sham-operated, estrogen-replacement-therapy and Piper sarmentosum groups (20.4 ± 4.05, 22.4 ± 4.14 and 17.5 ± 3.68 mm³, respectively). The median callus scores for the sham-operated, estrogen-replacement-therapy and Piper sarmentosum groups had median (range, minimum - maximum value) as 1.0 (0 - 2), 1.0 (1 - 2) and 1.0 (1 - 2), respectively, which were significantly lower than the ovariectomized-control group score of 2.0 (2 - 3). The median fracture scores for the sham-operated, estrogen-replacement-therapy and Piper sarmentosum groups were 3.0 (3 - 4), 3.0 (2 - 3) and 3.0 (2 - 3), respectively, which were significantly higher than the ovariectomized-control group score of 2.0 (1 - 2) (p<0.05).
CONCLUSION: The Piper sarmentosum extract improved fracture healing, as assessed by the reduced callus volumes and reduced callus scores. This extract is beneficial for fractures in osteoporotic states.
OBJECTIVES: The main aim of this study was to determine the effect of dexamethasone on the histomorphometric characteristics of perirenal adipocytes of adrenalectomized, dexamethasone-treated rats (ADR+Dexa) and the association of dexamethasone treatment with the expression and activity of 11 β-hydroxysteroid dehydrogenase type 1 (11 β-hydroxysteroid dehydrogenase type 1).
METHODS: A total of 20 male Sprague Dawley rats were divided into 3 groups: a baseline control group (n = 6), a sham-operated group (n = 7) and an adrenalectomized group (n=7). The adrenalectomized group was given intramuscular dexamethasone (ADR+Dexa) 2 weeks post adrenalectomy, and the rats from the sham-operated group were administered intramuscular vehicle (olive oil).
RESULTS: Treatment with 120 μg/kg intramuscular dexamethasone for 8 weeks resulted in a significant decrease in the diameter of the perirenal adipocytes (p<0.05) and a significant increase in the number of perirenal adipocytes (p<0.05). There was minimal weight gain but pronounced fat deposition in the dexamethasone-treated rats. These changes in the perirenal adipocytes were associated with high expression and dehydrogenase activity of 11β-hydroxysteroid dehydrogenase type 1.
CONCLUSIONS: In conclusion, dexamethasone increased the deposition of perirenal fat by hyperplasia, which causes increases in the expression and dehydrogenase activity of 11 β-hydroxysteroid dehydrogenase type 1 in adrenalectomized rats.
METHODS: A total of 547 males of Malay and Chinese ethnicity residing in the Klang Valley Malaysia underwent a detailed screening, and their blood was collected for sex hormones analyses.
RESULTS: Testosterone levels were normally distributed in the men (total, free and non-sex hormone-binding globulin (SHBG) bound fractions), and significant ethnic differences were observed (p<0.05); however, the effect size was small. In general, testosterone levels in males began to decline significantly after age 50. Significant ethnic differences in total, free and non-SHBG bound fraction estradiol levels were observed in the 20-29 and 50-59 age groups (p<0.05). The estradiol levels of Malay men decreased as they aged, but they increased for Chinese men starting at age 40.
CONCLUSIONS: Small but significant differences in testosterone levels existed between Malay and Chinese males. Significant age and race differences existed in estradiol levels. These differences might contribute to the ethnic group differences in diseases related to sex hormones, which other studies have found in Malaysia.
METHODS: Forty female, Sprague-Dawley rats were randomly divided into five groups (n =8): four controls and one test arm. The control arm comprised a baseline control, sham-operated control, ovariectomized control, and ovariectomized calcium-treated rats (receiving 1% calcium in drinking water ad libitum). The test arm was composed of ovariectomized, Tualang honey-treated rats (received 0.2 g/kg body weight of Tualang honey). Both the sham-operated control and ovariectomized control groups received vehicle treatment (deionized water), and the baseline control group was sacrificed without treatment.
RESULTS: All rats were orally gavaged daily for six weeks after day one post-surgery. The bone structural analysis of rats in the test arm group showed a significant increase in the bone volume per tissue volume (BV/TV), trabecular thickness (Tb.Th) and trabecular number (Tb.N) and a significant decrease in inter-trabecular space (Tb.Sp) compared with the ovariectomized control group. The trabecular thickness (Tb.Th) in the test arm group was significantly higher compared with the ovariectomized-calcium treated group, and the inter-trabecular space (Tb.Sp) in the test arm group was significantly narrower compared with the ovariectomized-calcium treated group.
CONCLUSION: In conclusion, ovariectomized rats that received Tualang honey showed more improvements in trabecular bone structure than the rats that received calcium.