In Antarctica, human activities have been reported to be the major cause of the accumulation of heavy metal contaminants. A comprehensive bibliometric analysis of publications on heavy metal contamination in Antarctica from year 2000 to 2020 was performed to obtain an overview of the current landscape in this line of research. A total of 106 documents were obtained from Scopus, the largest citation database. Extracted data were analysed, and VOSviewer software was used to visualise trends. The result showed an increase in publications and citations in the past 20 years indicating the rising interest on heavy metal contamination in the Antarctic region. Based on the analysis of keywords, the publications largely discuss various types of heavy metals found in the Antarctic water and sediment. The analysis on subject areas detects multiple disciplines involved, wherein the environmental science was well-represented. The top countries and authors producing the most publication in this field were from Australia, China, Brazil and Chile. Numerous efforts have been exercised to investigate heavy metal pollution and its mitigation approaches in the region in the past decades. This paper not only is relevant for scholars to understand the development status and trends in this field but also offers clear insights on the future direction of Antarctic heavy metal contamination and remediation research.
Lactic acid bacteria (LAB) are known to exhibit various beneficial roles in fermentation, serving as probiotics, and producing a plethora of valuable compounds including compounds with antimicrobial activity including bacteriocin-like inhibitory substance (BLIS) that can be used as biopreservative to improve food safety and quality. However, the yield of BLIS is often limited, which poses a challenge to be commercially competitive with the current preservation practice. Therefore, the present work aimed to establish an optimised two-plasmid CRISPR/Cas9 system to redirect the carbon flux away from lactate towards compounds with antimicrobial activity by disrupting lactate dehydrogenase gene (ldh) on various strains of LAB. The lactic acid-deficient (ldhΔ) strains caused a metabolic shift resulting in increased inhibitory activity against selected foodborne pathogens up to 78% than the wild-type (WT) strain. The most significant effect was depicted by Enterococcus faecalis-ldh∆ which displayed prominent bactericidal effects against all foodborne pathogens as compared to the WT that showed no antimicrobial activity. The present work provided a framework model for economically important LAB and other beneficial bacteria to synthesise and increase the yield of valuable food and industrial compounds. The present work reported for the first time that the metabolism of selected LAB can be manipulated by modifying ldh to attain metabolites with higher antimicrobial activity.
Plectranthus amboinicus (Lour.) Spreng is an aromatic medicinal herb known for its therapeutic and nutritional properties attributed by the presence of monoterpene and sesquiterpene compounds. Up until now, research on terpenoid biosynthesis has focused on a few mint species with economic importance such as thyme and oregano, yet the terpene synthases responsible for monoterpene production in P. amboinicus have not been described. Here we report the isolation, heterologous expression and functional characterization of a terpene synthase involved in P. amboinicus terpenoid biosynthesis. A putative monoterpene synthase gene (PamTps1) from P. amboinicus was isolated with an open reading frame of 1797 bp encoding a predicted protein of 598 amino acids with molecular weight of 69.6 kDa. PamTps1 shares 60-70% amino acid sequence similarity with other known terpene synthases of Lamiaceae. The in vitro enzymatic activity of PamTps1 demonstrated the conversion of geranyl pyrophosphate and farnesyl pyrophosphate exclusively into linalool and nerolidol, respectively, and thus PamTps1 was classified as a linalool/nerolidol synthase. In vivo activity of PamTps1 in a recombinant Escherichia coli strain revealed production of linalool and nerolidol which correlated with its in vitro activity. This outcome validated the multi-substrate usage of this enzyme in producing linalool and nerolidol both in in vivo and in vitro systems. The transcript level of PamTps1 was prominent in the leaf during daytime as compared to the stem. Gas chromatography-mass spectrometry (GC-MS) and quantitative real-time PCR analyses showed that maximal linalool level was released during the daytime and lower at night following a diurnal circadian pattern which correlated with the PamTps1 expression pattern. The PamTps1 cloned herein provides a molecular basis for the terpenoid biosynthesis in this local herb that could be exploited for valuable production using metabolic engineering in both microbial and plant systems.
Hydrocarbon pollution is widespread around the globe and, even in the remoteness of Antarctica, the impacts of hydrocarbons from anthropogenic sources are still apparent. Antarctica's chronically cold temperatures and other extreme environmental conditions reduce the rates of biological processes, including the biodegradation of pollutants. However, the native Antarctic microbial diversity provides a reservoir of cold-adapted microorganisms, some of which have the potential for biodegradation. This study evaluated the diesel hydrocarbon-degrading ability of a psychrotolerant marine bacterial consortium obtained from the coast of the north-west Antarctic Peninsula. The consortium's growth conditions were optimised using one-factor-at-a-time (OFAT) and statistical response surface methodology (RSM), which identified optimal growth conditions of pH 8.0, 10 °C, 25 ppt NaCl and 1.5 g/L NH4NO3. The predicted model was highly significant and confirmed that the parameters' salinity, temperature, nitrogen concentration and initial diesel concentration significantly influenced diesel biodegradation. Using the optimised values generated by RSM, a mass reduction of 12.23 mg/mL from the initial 30.518 mg/mL (4% (w/v)) concentration of diesel was achieved within a 6 d incubation period. This study provides further evidence for the presence of native hydrocarbon-degrading bacteria in non-contaminated Antarctic seawater.
Antibiotic resistance is a growing concern that is affecting public health globally. The search for alternative antimicrobial agents has become increasingly important. Antimicrobial peptides (AMPs) produced by Bacillus spp. have emerged as a promising alternative to antibiotics, due to their broad-spectrum antimicrobial activity against resistant pathogens. In this review, we provide an overview of Bacillus-derived AMPs, including their classification into ribosomal (bacteriocins) and non-ribosomal peptides (lipopeptides and polyketides). Additionally, we delve into the molecular mechanisms of AMP production and describe the key biosynthetic gene clusters involved. Despite their potential, the low yield of AMPs produced under normal laboratory conditions remains a challenge to large-scale production. This review thus concludes with a comprehensive summary of recent studies aimed at enhancing the productivity of Bacillus-derived AMPs. In addition to medium optimization and genetic manipulation, various molecular strategies have been explored to increase the production of recombinant antimicrobial peptides (AMPs). These include the selection of appropriate expression systems, the engineering of expression promoters, and metabolic engineering. Bacillus-derived AMPs offer great potential as alternative antimicrobial agents, and this review provides valuable insights on the strategies to enhance their production yield, which may have significant implications for combating antibiotic resistance. KEY POINTS: • Bacillus-derived AMP is a potential alternative therapy for resistant pathogens • Bacillus produces two main classes of AMPs: ribosomal and non-ribosomal peptides • AMP yield can be enhanced using culture optimization and molecular approaches.
With the progressive increase in human activities in the Antarctic region, the possibility of domestic oil spillage also increases. Developing means for the removal of oils, such as canola oil, from the environment and waste "grey" water using biological approaches is therefore desirable, since the thermal process of oil degradation is expensive and ineffective. Thus, in this study an indigenous cold-adapted Antarctic soil bacterium, Rhodococcus erythropolis strain AQ5-07, was screened for biosurfactant production ability using the multiple approaches of blood haemolysis, surface tension, emulsification index, oil spreading, drop collapse and "MATH" assay for cellular hydrophobicity. The growth kinetics of the bacterium containing different canola oil concentration was studied. The strain showed β-haemolysis on blood agar with a high emulsification index and low surface tension value of 91.5% and 25.14 mN/m, respectively. Of the models tested, the Haldane model provided the best description of the growth kinetics, although several models were similar in performance. Parameters obtained from the modelling were the maximum specific growth rate (qmax), concentration of substrate at the half maximum specific growth rate, Ks% (v/v) and the inhibition constant Ki% (v/v), with values of 0.142 h-1, 7.743% (v/v) and 0.399% (v/v), respectively. These biological coefficients are useful in predicting growth conditions for batch studies, and also relevant to "in field" bioremediation strategies where the concentration of oil might need to be diluted to non-toxic levels prior to remediation. Biosurfactants can also have application in enhanced oil recovery (EOR) under different environmental conditions.
GDSL esterase is designated as a member of Family II of lipolytic enzymes known to catalyse the synthesis and hydrolysis of ester bonds. The enzyme possesses a highly conserved motif Ser-Gly-Asn-His in the four conserved blocks I, II, III and V respectively. The enzyme characteristics, such as region-, chemo-, and enantioselectivity, help in resolving the racemic mixture of single-isomer chiral drugs. Recently, crystal structure of GDSL esterase from Photobacterium J15 has been reported (PDB ID: 5XTU) but not in complex with substrate. Therefore, GDSL in complex with substrate could provide insights into the binding mode of substrate towards inactive form of GDSL esterase (S12A) and identify the hot spot residues for the designing of a better binding pocket. Insight into molecular mechanisms is limited due to the lack of crystal structure of GDSL esterase-substrate complex. In this paper, the crystallization of mutant GDSL esterase (S12A) (PDB ID: 8HWO) and its complex with butyric acid (PDB ID: 8HWP) are reported. The optimized structure would be vital in determining hot spot residue for GDSL esterase. This preliminary study provides an understanding of the interactions between enzymes and hydrolysed p-nitro-phenyl butyrate. The information could guide in the rational design of GDSL esterase in overcoming the medical limitations associated with racemic mixture.