AIM: We aimed to map the global telestroke landscape and characterize existing networks.
METHODS: We employed a four-tiered approach to comprehensively identify telestroke networks, primarily involving engagement with national stroke experts, stroke societies, and international stroke authorities. A carefully designed questionnaire was then distributed to the leaders of all identified networks to assess these networks' structures, processes, and outcomes.
RESULTS: We identified 254 telestroke networks distributed across 67 countries. High-income countries (HICs) concentrated 175 (69%) of the networks. No evidence of telestroke services was found in 58 (30%) countries. From the identified networks, 88 (34%) completed the survey, being 61 (71%) located in HICs. Network setup was highly heterogeneous, ranging from 17 (22%) networks with more than 20 affiliated hospitals, providing thousands of annual consultations using purpose-built highly specialized technology, to 11 (13%) networks with fewer than 120 consultations annually using generic videoconferencing equipment. Real-time video and image transfer was employed in 64 (75%) networks, while 62 (74%) conducting quality monitoring. Most networks established in the past 3 years were located in low- and middle-income countries (LMICs).
CONCLUSION: This comprehensive global survey of telestroke networks found significant variation in network coverage, setup, and technology use. Most services are in HICs, and a few services are in LMICs, although an emerging trend of new networks in these regions marks a pivotal moment in global telestroke care. The wide variation in quality monitoring practices across networks, with many failing to report key performance metrics, underscores the urgent need for standardized, resource-appropriate, quality assurance measures that can be adapted to diverse settings.
METHODS: We conducted a systematic review and individual patient meta-analysis, which we report according to the Preferred Reporting Items for Systematic Review and Meta-analyses of Individual Participant Data guidelines. PubMed and Embase were searched from inception to May 29, 2023, using the terms ((stroke) AND (randomised OR randomized) AND (tranexamic acid) AND (haemorrhage OR hemorrhage)). We included randomized trials comparing tranexamic acid with placebo in participants with primary intracerebral hemorrhage who had a spot sign and who had follow-up imaging within the required timeframe. Individual patient data were provided by each study and were integrated by the coordinating center. Data were pooled using a random-effects model. The primary endpoint was hematoma growth within 24 hours, defined as ≥33% relative or ≥6 mL absolute hematoma expansion compared with baseline, analyzed using mixed-effects-modified Poisson regression with robust standard errors, adjusted for baseline hematoma volume. Safety outcomes were mortality and major thromboembolic events within 90 days.
RESULTS: Of 197 studies identified, 3 were eligible, contributing 162 participants for the primary analysis (60 female and 102 male). Hematoma growth occurred in 36 of 74 (49%) participants treated with tranexamic acid, compared with 48 of 88 (55%) participants treated with placebo (adjusted risk ratio 0.86, 95% CI 0.84-0.89, p < 0.001). Adjusted median absolute hematoma growth was 1.60 mL (95% CI 0.77-2.43) lower with tranexamic acid vs placebo. No differences in functional outcome or safety were observed.
DISCUSSION: Tranexamic acid modestly reduced hematoma growth in patients with CT angiography spot signs treated within 4.5 hours of onset. Given the trials in the meta-analysis were individually neutral, these results require further validation before clinical application.