Displaying publications 41 - 49 of 49 in total

Abstract:
Sort:
  1. Md Badrul Hisham NH, Ibrahim MF, Ramli N, Abd-Aziz S
    Molecules, 2019 Jul 18;24(14).
    PMID: 31323813 DOI: 10.3390/molecules24142617
    Heavy metals from industrial effluents and sewage contribute to serious water pollution in most developing countries. The constant penetration and contamination of heavy metals into natural water sources may substantially raise the chances of human exposure to these metals through ingestion, inhalation, or skin contact, which could lead to liver damage, cancer, and other severe conditions in the long term. Biosurfactant as an efficient biological surface-active agent may provide an alternative solution for the removal of heavy metals from industrial wastes. Biosurfactants exhibit the properties of reducing surface and interfacial tension, stabilizing emulsions, promoting foaming, high selectivity, and specific activity at extreme temperatures, pH, and salinity, and the ability to be synthesized from renewable resources. This study aimed to produce biosurfactant from renewable feedstock, which is used cooking oil (UCO), by a local isolate, namely Bacillus sp. HIP3 for heavy metals removal. Bacillus sp. HIP3 is a Gram-positive isolate that gave the highest oil displacement area with the lowest surface tension, of 38 mN/m, after 7 days of culturing in mineral salt medium and 2% (v/v) UCO at a temperature of 30 °C and under agitation at 200 rpm. An extraction method, using chloroform:methanol (2:1) as the solvents, gave the highest biosurfactant yield, which was 9.5 g/L. High performance liquid chromatography (HPLC) analysis confirmed that the biosurfactant produced by Bacillus sp. HIP3 consists of a lipopeptide similar to standard surfactin. The biosurfactant was capable of removing 13.57%, 12.71%, 2.91%, 1.68%, and 0.7% of copper, lead, zinc, chromium, and cadmium, respectively, from artificially contaminated water, highlighting its potential for bioremediation.
  2. Rizal NFAA, Ibrahim MF, Zakaria MR, Abd-Aziz S, Yee PL, Hassan MA
    Molecules, 2018 Jun 07;23(6).
    PMID: 29880760 DOI: 10.3390/molecules23061381
    Malaysia is the second largest palm oil producer in the world and this industry generates more than 80 million tonnes of biomass every year. When considering the potential of this biomass to be used as a fermentation feedstock, many studies have been conducted to develop a complete process for sugar production. One of the essential processes is the pre-treatment to modify the lignocellulosic components by altering the structural arrangement and/or removing lignin component to expose the internal structure of cellulose and hemicellulose for cellulases to digest it into sugars. Each of the pre-treatment processes that were developed has their own advantages and disadvantages, which are reviewed in this study.
  3. Wan Mohtar WA, Hamid AA, Abd-Aziz S, Muhamad SK, Saari N
    J Food Sci Technol, 2014 Dec;51(12):3658-68.
    PMID: 25477632 DOI: 10.1007/s13197-012-0919-1
    Winged bean [Psophocarpus tetragonolobus (L.) DC.] seed is a potential underexploited source of vegetable protein due to its high protein content. In the present work, undefatted and defatted winged bean seed hydrolysates, designated as UWBSH and DWBSH, respectively were produced separately by four proteolytic enzymes namely Flavourzyme, Alcalase, Bromelain, and Papain using pH-stat method in a batch reactor. Enzymatic hydrolysis was carried out over a period of 0.5 to 5 h. UWBSH and DWBSH produced were tested for their ACE inhibitory activity in relation to the hydrolysis time and degree of hydrolysis (DH). Maximum ACE inhibitory activity, both for UWBSH and DWBSH, were observed during 3 to 5 h of hydrolysis. Both, UWBSH (DH 91.84 %), and DWSBH (DH 18.72 %), produced by Papain at 5 h hydrolysis, exhibited exceptionally high ACE inhibitory activity with IC50 value 0.064 and 0.249 mg mL(-1), respectively. Besides, papain-produced UWBSH and DWBSH were further fractionated into three fractions based on molecular weight (UWBSH-I, <10 kDa; UWBSH-II, <5 kDa; UWBSH-III, <2 kDa) and (DWBSH-I, <10 kDa; DWBSH-II, <5 kDa; DWBSH-III, <2 kDa). UWBSH-III revealed the highest ACE inhibitory activity (IC50 0.003 mg mL(-1)) compared with DWBSH-III (IC50 0.130 mg mL(-1)). The results of the present investigation revealed that winged bean seed hydrolysates can be explored as a potential source of ACE inhibitory peptides suggesting their uses for physiological benefits as well as for other functional food applications.
  4. Chu PH, Jenol MA, Phang LY, Ibrahim MF, Purkan P, Hadi S, et al.
    Environ Sci Pollut Res Int, 2024 May;31(23):33303-33324.
    PMID: 38710845 DOI: 10.1007/s11356-024-33534-0
    Agricultural plantations in Indonesia and Malaysia yield substantial waste, necessitating proper disposal to address environmental concerns. Yet, these wastes, rich in starch and lignocellulosic content, offer an opportunity for value-added product development, particularly amino acid production. Traditional methods often rely on costly commercial enzymes to convert biomass into fermentable sugars for amino acid production. An alternative, consolidated bioprocessing, enables the direct conversion of agricultural biomass into amino acids using selected microorganisms. This review provides a comprehensive assessment of the potential of agricultural biomass in Indonesia and Malaysia for amino acid production through consolidated bioprocessing. It explores suitable microorganisms and presents a case study on using Bacillus subtilis ATCC 6051 to produce 9.56 mg/mL of amino acids directly from pineapple plant stems. These findings contribute to the advancement of sustainable amino acid production methods using agricultural biomass especially in Indonesia and Malaysia through consolidated bioprocessing, reducing waste and enhancing environmental sustainability.
  5. Lam HY, Yusoff K, Yeap SK, Subramani T, Abd-Aziz S, Omar AR, et al.
    Int J Med Sci, 2014;11(12):1240-7.
    PMID: 25317070 DOI: 10.7150/ijms.8170
    Immunotherapy has raised the attention of many scientists because it hold promise to be an attractive therapeutic strategy to treat a number of disorders. In this study, the immunomodulatory effects of low titers of Newcastle disease virus (NDV) AF2240 on human peripheral blood mononuclear cells (PBMC) were analyzed. We evaluated cytokine secretion and PBMC activation by cell proliferation assay, immunophenotyping and enzyme linked immunosorbent assay. The proliferation of the human PBMC was measured to be 28.5% and 36.5% upon treatment with 8 hemaglutinin unit (HAU) and 2 HAU of NDV respectively. Interestingly, the percentage of cells with activating markers CD16 and CD56 were increased significantly. Furthermore, the intracellular perforin and granzyme levels were also increased upon virus infection. Human PBMC treated with NDV titer 8 HAU was found to stimulate the highest level of cytokine production including interferon-γ, interleukin-2 and interleukin-12. The release of these proteins contributes to the antitumor effect of PBMC against MCF-7 breast cancer cells. Based on the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay, activated human PBMC showed high cytolytic efficiency towards human breast tumor cells. In summary, NDV was able to stimulate PBMC proliferation, cytokine secretion and cytolytic activity.
  6. Nik-Pa NIM, Sobri MFM, Abd-Aziz S, Ibrahim MF, Kamal Bahrin E, Mohammed Alitheen NB, et al.
    Int J Mol Sci, 2020 May 30;21(11).
    PMID: 32486212 DOI: 10.3390/ijms21113919
    Two optimization strategies, codon usage modification and glycine supplementation, were adopted to improve the extracellular production of Bacillus sp. NR5 UPM β-cyclodextrin glycosyltransferase (CGT-BS) in recombinant Escherichia coli. Several rare codons were eliminated and replaced with the ones favored by E. coli cells, resulting in an increased codon adaptation index (CAI) from 0.67 to 0.78. The cultivation of the codon modified recombinant E. coli following optimization of glycine supplementation enhanced the secretion of β-CGTase activity up to 2.2-fold at 12 h of cultivation as compared to the control. β-CGTase secreted into the culture medium by the transformant reached 65.524 U/mL at post-induction temperature of 37 °C with addition of 1.2 mM glycine and induced at 2 h of cultivation. A 20.1-fold purity of the recombinant β-CGTase was obtained when purified through a combination of diafiltration and nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography. This combined strategy doubled the extracellular β-CGTase production when compared to the single approach, hence offering the potential of enhancing the expression of extracellular enzymes, particularly β-CGTase by the recombinant E. coli.
  7. Darmawan MA, Muhammad BZ, Harahap AFP, Ramadhan MYA, Sahlan M, Haryuni, et al.
    Heliyon, 2020 Dec;6(12):e05742.
    PMID: 33364505 DOI: 10.1016/j.heliyon.2020.e05742
    Tengkawang fat (Shorea stenoptera), from an indigenous plant of the Kalimantan forest, has excellent potential as an alternative source of vegetable fat because it has a high level of fatty acids composition. Activated natural bentonite can be used as a bleaching agent to improve the quality of tengkawang fat. This research aims to reduce the acidity, peroxide number values and identify the physicochemical properties (fatty acid composition, nutrients, and thermal) of tengkawang butter. Initially, tengkawang samples from Nanga Yen and Sintang were pre-treated using the degumming process with 1% phosphoric acid and the neutralization process with a 1 M NaOH 10% w/w solution. The results show that the acidity (mg NaOH/g) of the tengkawang fat samples was reduced from 11.00 to 3.36 when using bentonite activated at 200 °C. The bentonite activated with 0.5 M HCl reduced the acidity to 3.61. The peroxide number (meq O2/kg) of the tengkawang fat samples was reduced from 9.45 to 4.84 and 3.47 by bleaching with thermal-activated and acid-activated bentonites, respectively. Peroxide value correlates with β-carotene content. The smaller of the β-carotene content, the smaller the peroxide value. The acidity, peroxide number, and iodine number values from tengkawang fat after treatment adhere to the SNI 2903: 2016 standard. The main content of fatty acids in tengkawang fat is palmitic acid, stearic acid, and oleic acid. These results show that both products are suitable for the food industry in terms of the acid and peroxide numbers. The application of this research results will assist local people in increasing the economic value of the product from tengkawang plant, which is an indigenous plant from Kalimantan.
  8. Ahmad Zamzuri M'I, Abd Majid FN, Mihat M, Ibrahim SS, Ismail M, Abd Aziz S, et al.
    PMID: 36833715 DOI: 10.3390/ijerph20043021
    INTRODUCTION: Primary amoebic meningoencephalitis (PAM) is a rare but lethal infection of the brain caused by a eukaryote called Naegleria fowleri (N. fowleri). The aim of this review is to consolidate the recently published case reports of N. fowleri infection by describing its epidemiology and clinical features with the goal of ultimately disseminating this information to healthcare personnel.

    METHODS: A comprehensive literature search was carried out using PubMed, Web of Science, Scopus, and OVID databases until 31 December 2022 by two independent reviewers. All studies from the year 2013 were extracted, and quality assessments were carried out meticulously prior to their inclusion in the final analysis.

    RESULTS: A total of 21 studies were selected for qualitative analyses out of the 461 studies extracted. The cases were distributed globally, and 72.7% of the cases succumbed to mortality. The youngest case was an 11-day-old boy, while the eldest was a 75-year-old. Significant exposure to freshwater either from recreational activities or from a habit of irrigating the nostrils preceded onset. The symptoms at early presentation included fever, headache, and vomiting, while late sequalae showed neurological manifestation. An accurate diagnosis remains a challenge, as the symptoms mimic bacterial meningitis. Confirmatory tests include the direct visualisation of the amoeba or the use of the polymerase chain reaction method.

    CONCLUSIONS: N. fowleri infection is rare but leads to PAM. Its occurrence is worldwide with a significant risk of fatality. The suggested probable case definition based on the findings is the acute onset of fever, headache, and vomiting with meningeal symptoms following exposure to freshwater within the previous 14 days. Continuous health promotion and health education activities for the public can help to improve knowledge and awareness prior to engagement in freshwater activities.

  9. Talib N, Mohamad NE, Yeap SK, Ho CL, Masarudin MJ, Abd-Aziz S, et al.
    Probiotics Antimicrob Proteins, 2024 Dec;16(6):2161-2180.
    PMID: 37755545 DOI: 10.1007/s12602-023-10159-2
    The prevalence of type 2 diabetes mellitus (T2DM) is alarming because it is always linked to the increase in chronic diseases, mortality, and socioeconomic burden. Water kefir has a wide range of functional and probiotic characteristics attributed to the microorganisms present in the kefir grains. The present study aims to evaluate the in vivo anti-diabetic potential of the isolated Lactobacillus paracasei from Malaysian water kefir grains (MWKG) which was reported to have excellent probiotic properties and high antioxidant activities as reported previously. High-fat diet/streptozotocin (HFD/STZ) induction was used to obtain a T2DM model followed by treatment with the isolated L. paracasei from MWKG. The levels of glucose, insulin, and in vivo liver antioxidants were quantified after 14 weeks. Gene expression analysis of the liver was also carried out using microarray analysis, and several genes were selected for validation using quantitative real-time PCR. Insulin tolerance test demonstrated that the L. paracasei isolated from the MWKG alleviated T2DM by improving the area under the curve of the insulin tolerance test whereby low-dose and high-dose concentrations treated groups showed 2424.50 ± 437.02 mmol/L·min and 2017.50 ± 347.09 mmol/L·min, respectively, compared to untreated diabetic mice which was 3884.50 ± 39.36 mmol/L·min. Additionally, treatment with the isolated L. paracasei from MWKG regulated the expression of several genes related to glucose homeostasis and lipid metabolism in diabetic mice. These results suggested that the isolated L. paracasei from MWKG could be a potential dietary supplement for T2DM.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links