EXPERIMENTAL PROCEDURE: The microbial limit test (MLT) studies indicated the suitable dosage of minimum and maximum gamma irradiation for leaf extracts as well as dried leaves of all the tested medicinal plants. Quantitative analysis of total phenolic content (TPC) analysis is based on calorimetric measurements determined using the Folin-Ciocalteu reagent with gallic acid (GA) used as the reference. In vitro cytotoxicity assay by using fibroblast (L929) cell lines was performed on each plant to determine the toxicity effect which sodium dodecyl sulfate (SDS) as the positive control. DPPH (2,2-diphenyl-1-picryl-hydrazyl) assay was conducted by using vitamin C and GA as the positive controls to determine the antioxidant property of each plant.
RESULTS AND CONCLUSION: The MLT analysis indicated that the suitable dosage gamma irradiation for leaf extracts was 6-12 kGy and dried leaves were 9-13 kGy. The amount of GA concentration in each plant increased significantly from 30-51 mg GAE g-1 before treatment to 57-103 mg GAE g-1 after treatment with gamma radiation. This showed no significant effect of in vitro cytotoxicity activity before and after treatment with gamma irradiation in this study. Effective concentration (EC50) values of Khaya senegalensis plant reduced significantly (P ≤ 0.005) from 44.510 μg/ml before treatment to 24.691 μg/ml after treatment with gamma radiation, which indicate an increase of free radical scavenging activity.
AIM OF THE STUDY: The present study was designed to investigate the in vitro anti-inflammatory effect of the smoke condensate using cyclooxygenase -1 (COX-1) and -2 (COX-2) as well as its potential genotoxic effects using the bacterial-based Ames test and the mammalian cells-based micronucleus/cytome and comet assays.
MATERIAL AND METHODS: The smoke was prepared in a similar way to that commonly used traditionally by Sudanese women then condensed using a funnel. Cyclooxygenase assay was used to evaluate its in vitro anti-inflammatory activity. The neutral red uptake assay was conducted to determine the range of concentrations in the mammalian cells-based assays. The Ames, cytome and comet assays were used to assess its potential adverse (long-term) effects.
RESULTS: The smoke condensate did not inhibit the cyclooxygenases at the highest concentration tested. All smoke condensate concentrations tested in the Salmonella/microsome assay induced mutation in both TA98 and TA100 in a dose dependent manner. A significant increase in the frequency of micronucleated cells, nucleoplasmic bridges and nuclear buds was observed in the cytome assay as well as in the % DNA damage in the comet assay.
CONCLUSIONS: The findings indicated a dose dependent genotoxic potential of the smoke condensate in the bacterial and human C3A cells and may pose a health risk to women since the smoke bath is frequently practised. The study highlighted the need for further rigorous assessment of the risks associated with the smoke bath practice.
OBJECTIVES: The plant virus Cowpea Mosaic Virus (CPMV) has been innovatively used as a nanoscaffold. Utilization of the internal cavity of empty Virus-Like Particles (VLPs) for the inclusion of therapeutics within the capsid has opened many opportunities in drug delivery and imaging applications.
METHODS: The encapsidation of magnetic materials and anticancer drugs was achieved. SuperscriptCPMV denotes molecules attached to the external surface of CPMV and CPMVSubscript denotes molecules within the interior of the capsid.
RESULTS: Here, the generation of novel VLPs incorporating iron-platinum nanoparticles TCPMVFePt and cisplatin (Cis) (TCPMVCis) is reported. TCPMVCis exhibited a cytotoxic IC50 of TCPMVCis on both A549 and MDA-MB-231 cell lines of 1.8 μM and 3.9 μM, respectively after 72 hours of incubation. The TCPMVFePt were prepared as potential MRI contrast agents.
CONCLUSION: Cisplatin loaded VLP (TCPMVCis) is shown to enhance cisplatin cytotoxicity in cancer cell lines with its potency increased by 2.3-folds.