RESULTS: Marker-assisted foreground selection was performed using RM6836 and RM8225 to identify plants possessing blast resistance genes. Seventy microsatellite markers were used to estimate recurrent parent genome (RPG) recovery. Our analysis led to the development of 13 improved blast resistant lines with Piz, Pi2 and Pi9 broad-spectrum blast resistance genes and an MR219 genetic background. The RPG recovery of the selected improved lines was up to 97.70% with an average value of 95.98%. Selected improved lines showed a resistance response against the most virulent blast pathogen pathotype, P7.2. The selected improved lines did not express any negative effect on agronomic traits in comparison with MR219.
CONCLUSION: The research findings of this study will be a conducive approach for the application of different molecular techniques that may result in accelerating the development of new disease-resistant rice varieties, which in turn will match rising demand and food security worldwide. © 2016 Society of Chemical Industry.
SIGNIFICANCE: Plant proteomics study is a rapidly growing area of biological research that is positively impacting plant science. With the recent advances in new technologies, proteomics not only allows us to comprehensively analyses crop proteins, but also help us to understand the functions of the genes. In this review, we highlighted recent proteomic studies in commercial crops and updated the advances in our understanding of the proteomes of these crops. We believe that proteomic-based research will continue to grow and contribute to the improvement of crops.
METHODS: Genome sequencing of RCMV ALL-03 was carried out in order to identify the open reading frame (ORF), homology comparison of ORF with other strains of CMV, phylogenetic analysis, classifying ORF with its corresponding conserved genes, and determination of functional proteins and grouping of gene families in order to obtain fundamental knowledge of the genome.
RESULTS: The present study revealed a total of 123 Coding DNA sequences (CDS) from RCMV ALL-03 with 37 conserved ORF domains as with all herpesvirus genomes. All the CDS possess similar function with RCMV-England followed by RCMV-Berlin, RCMV-Maastricht, and Human CMV. The phylogenetic analysis of RCMV ALL-03 based on conserving genes of herpes virus showed that the Malaysian RCMV isolate is closest to RCMV-English and RCMV-Berlin strains, with 99% and 97% homology, respectively. Similarly, it also demonstrated an evolutionary relationship between RCMV ALL-03 and other strains of herpesviruses from all the three subfamilies. Interestingly, betaherpesvirus subfamily, which has been shown to be more closely related with gammaherpesviruses as compared to alphaherpesviruses, shares some of the functional ORFs. In addition, the arrangement of gene blocks for RCMV ALL-03, which was conserved among herpesvirus family members was also observed in the RCMV ALL-03 genome.
CONCLUSION: Genomic analysis of RCMV ALL-03 provided an overall picture of the whole genome organization and it served as a good platform for further understanding on the divergence in the family of Herpesviridae.
MATERIALS AND METHODS: Biofilm yield of 32 Helicobacter pylori strains (standard strain and 31 clinical strains) were determined by crystal-violet assay and grouped into poor, moderate and good biofilm forming groups. Whole genome sequencing of these 32 clinical strains was performed on the Illumina MiSeq platform. Annotation and comparison of the differences between the genomic sequences were carried out using RAST (Rapid Annotation using Subsystem Technology) and SEED viewer. Genes identified were confirmed using PCR.
RESULTS: Genes identified to be associated with biofilm formation in H. pylori includes alpha (1,3)-fucosyltransferase, flagellar protein, 3 hypothetical proteins, outer membrane protein and a cag pathogenicity island protein. These genes play a role in bacterial motility, lipopolysaccharide (LPS) synthesis, Lewis antigen synthesis, adhesion and/or the type-IV secretion system (T4SS). Deletion of cagA and cagPAI confirmed that CagA and T4SS were involved in H. pylori biofilm formation.
CONCLUSIONS: Results from this study suggest that biofilm formation in H. pylori might be genetically determined and might be influenced by multiple genes. Good, moderate and poor biofilm forming strain might differ during the initiation of biofilm formation.
METHODS: In this study, fbpA and mazE genes were chosen as new antimicrobial targets and treated with antisense peptide nucleic acid (PNA). Firstly, they were evaluated by bioinformatics and then analyzed by experimental procedures. Secondly, the functionality was evaluated by stress conditions.
RESULTS: Our results interestingly demonstrated that when fbpA and mazE loci of N. meningitidis were targeted by antisense PNA, 8 µM concentration of fbpA-PNA as well as 30 µM concentration of mazE-PNA inhibited the growth of N. meningitides and were found to be bacteriostatic, whereas 10 μM concentration of fbpA-PNA showed bacteriocidal activity.
CONCLUSION: Our findings demonstrated the bactriocidal activity of fbpA-PNA and bacteriostatic activity of mazEPNA. Therefore, mazE and fbpA genes should be potent antimicrobial targets but further analysis including in vivo analysis should be performed.