Displaying publications 521 - 540 of 1771 in total

Abstract:
Sort:
  1. Baraya YS, Wong KK, Yaacob NS
    Anticancer Agents Med Chem, 2017;17(6):770-783.
    PMID: 27539316 DOI: 10.2174/1871520616666160817111242
    Breast cancer has continued to cause high cancer death rates among women worldwide. The use of plants' natural products in breast cancer treatment has received more attention in recent years due to their potentially wider safety margin and the potential to complement conventional chemotherapeutic drugs. Plantbased products have demonstrated anticancer potential through different biological pathways including modulation of the immune system. Immunomodulatory properties of medicinal plants have been shown to mitigate breast cancer cell growth. Different immune cell types participate in this process especially cytotoxic T cells and natural killer cells, and cytokines including chemokines and tumor necrosis factor-α. Medicinal plants such as Glycyrrhiza glabra, Uncaria tomentosa, Camellia sinensis, Panax ginseng, Prunus armenaica (apricot), Allium sativum, Arctium lappa and Curcuma longa were reported to hold strong potential in breast cancer treatment in various parts of the world. Interestingly, research findings have shown that these plants possess bioactive immunomodulators as their main constituents producing the anticancer effects. These immunomodulatory compounds include ajoene, arctigenin, β-carotene, curcumin, epigallocatechin-3-gallate, ginsan, glabridin and quinic acid. In this review, we discussed the ability of these eight immunomodulators in regulating the immune system potentially applicable in breast cancer treatment via anti-inflammatory (curcumin, arctigenin, glabridin and ajoene) and lymphocytes activation (β-carotene, epigallocatechin-3-gallate, quinic acid and ginsan) properties, as well as future research direction in their use for breast cancer treatment.
    Matched MeSH terms: Cell Line, Tumor
  2. Fong SY, Piva T, Dekiwadia C, Urban S, Huynh T
    BMC Complement Altern Med, 2016 Sep 20;16:368.
    PMID: 27646974 DOI: 10.1186/s12906-016-1348-x
    Clinacanthus nutans (Burm. f.) Lindau leaves are widely used by cancer patients and the leaf extracts possess cytotoxic and antiproliferative effects on several human cancer cell lines. However, the effect of C. nutans leaf extract on human melanoma, which is the least common but most fatal form of skin cancer and one of the most common cancers diagnosed in both sexes worldwide, is unknown. There is also limited information on whether the bioactivity of extracts differs between C. nutans leaves grown in different geographical locations with varying environmental conditions.
    Matched MeSH terms: Cell Line, Tumor
  3. Breadmore MC, Wuethrich A, Li F, Phung SC, Kalsoom U, Cabot JM, et al.
    Electrophoresis, 2017 01;38(1):33-59.
    PMID: 27678139 DOI: 10.1002/elps.201600331
    One of the most cited limitations of capillary (and microchip) electrophoresis is the poor sensitivity. This review continues to update this series of biennial reviews, first published in Electrophoresis in 2007, on developments in the field of on-line/in-line concentration methods in capillaries and microchips, covering the period July 2014-June 2016. It includes developments in the field of stacking, covering all methods from field amplified sample stacking and large volume sample stacking, through to isotachophoresis, dynamic pH junction, and sweeping. Attention is also given to on-line or in-line extraction methods that have been used for electrophoresis.
    Matched MeSH terms: Cell Line
  4. Jayash SN, Hashim NM, Misran M, Baharuddin NA
    J Biomed Mater Res A, 2017 02;105(2):398-407.
    PMID: 27684563 DOI: 10.1002/jbm.a.35919
    The osteoprotegerin (OPG) system plays a critical role in bone remodelling by regulating osteoclast formation and activity. The study aimed to determine the physicochemical properties and biocompatibility of a newly formulated OPG-chitosan gel. The OPG-chitosan gel was formulated using human OPG protein and water-soluble chitosan. The physicochemical properties were determined using Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Gel morphology was determined using scanning electron microscopy (SEM) and then it was subjected to a protein release assay and biodegradability test. An in vitro cytotoxicity test on normal human periodontal ligament (NHPL) fibroblasts and normal human (NH) osteoblasts was carried out using the AlamarBlue assay. In vivo evaluation in a rabbit model involved creating critical-sized defects in calvarial bone, filling with the OPG-chitosan gel and sacrificing at 12 weeks. In vitro results demonstrated that the 25 kDa OPG-chitosan gel had the highest rate of protein release and achieved 90% degradation in 28 days. At 12 weeks, the defects filled with 25 kDa OPG-chitosan gel showed significant (p 
    Matched MeSH terms: Cell Line
  5. Yadav, M.
    MyJurnal
    Human Herpesvirus-6 (HHV-6) infections are ubiquitous in human populations with an antibody prevalence of 30-85 percent in normal adults. The virus in vivo infects T-lympho-cytes, at various stages of differentiation and is cytopathic to host cell during productive infection. In culture the virus is pleiotropic for several established cell lines including T and B lymphocytes, macrophages and neural cells. Primary viral infection occurs mostly in early childhood. The saliva is the primary source of infection. The infection remains clinically silent in majority but it establishes a lifelong latent presence. However, in about 30 percent of infants, probably a varient HHV-6, causes exanthem subitum (roseola infantum). If the primary infection of HHV-6 is delayed until adolescence it is accompanied by clinical manifestation of an Epstein-Barr virus like infectious mononucleosis in some individuals. Depressed host immune functions may reactivate the latent HHV-6 infection and further aggravation of the primary disease. Since the virus is cytopathic to the host cell the presence of HHV-6 in AIDS patients and other lympholiferative disorders may increase the severity and pathogenicity of the primary disease. Antibodies to the HHV-6 are enhanced in autoimmune disorders, chronic fatigue syndrome, progressive lymphoroliferative disorders and organ transplant patients on immunosuppressive drugs therapy. While considerable basic immunovirological information has been obtained in the last 4 years, large gaps in knowledge still exist on the biologic interaction of HHV-6 with the host.
    Matched MeSH terms: Cell Line
  6. Tan CW, Tee HK, Lee MH, Sam IC, Chan YF
    PLoS One, 2016;11(9):e0162771.
    PMID: 27617744 DOI: 10.1371/journal.pone.0162771
    Enterovirus A71 (EV-A71) causes major outbreaks of hand, foot and mouth disease, and is occasionally associated with neurological complications and death in children. Reverse genetics is widely used in the field of virology for functional study of viral genes. For EV-A71, such tools are limited to clones that are transcriptionally controlled by T7/SP6 bacteriophage promoter. This is often time-consuming and expensive. Here, we describe the development of infectious plasmid DNA-based EV-A71 clones, for which EV-A71 genome expression is under transcriptional control by the CMV-intermediate early promoter and SV40 transcriptional-termination signal. Transfection of this EV-A71 infectious DNA produces good virus yield similar to in vitro-transcribed EV-A71 infectious RNA, 6.4 and 5.8 log10PFU/ml, respectively. Infectious plasmid with enhanced green fluorescence protein and Nano luciferase reporter genes also produced good virus titers, with 4.3 and 5.0 log10 PFU/ml, respectively. Another infectious plasmid with both CMV and T7 promoters was also developed for easy manipulation of in vitro transcription or direct plasmid transfection. Transfection with either dual-promoter infectious plasmid DNA or infectious RNA derived from this dual-promoter clone produced infectious viral particles. Incorporation of hepatitis delta virus ribozyme, which yields precise 3' ends of the DNA-launched EV-A71 genomic transcripts, increased infectious viral production. In contrast, the incorporation of hammerhead ribozyme in the DNA-launched EV-A71 resulted in lower virus yield, but improved the virus titers for T7 promoter-derived infectious RNA. This study describes rapid and robust reverse genetic tools for EV-A71.
    Matched MeSH terms: Cell Line, Tumor
  7. Pahrudin Arrozi A, Shukri SNS, Wan Ngah WZ, Mohd Yusof YA, Ahmad Damanhuri MH, Makpol S
    Appl Biochem Biotechnol, 2017 Nov;183(3):853-866.
    PMID: 28417423 DOI: 10.1007/s12010-017-2468-6
    Neuroblastoma cell lines such as SH-SY5Y are the most frequently utilized models in neurodegenerative research, and their use has advanced the understanding of the pathology of neurodegeneration over the past few decades. In Alzheimer's disease (AD), several pathogenic mutations have been described, all of which cause elevated levels of pathological hallmarks such as amyloid-beta (Aβ). Although the genetics of Alzheimer's disease is well known, familial AD only accounts for a small number of cases in the population, with the rest being sporadic AD, which contains no known mutations. Currently, most of the in vitro models used to study AD pathogenesis only examine the level of Aβ42 as a confirmation of successful model generation and only perform comparisons between wild-type APP and single mutants of the APP gene. Recent findings have shown that the Aβ42/40 ratio in cerebrospinal fluid (CSF) is a better diagnostic indicator for AD patients than is Aβ42 alone and that more extensive Aβ formation, such as accumulation of intraneuronal Aβ, Aβ plaques, soluble oligomeric Aβ (oAβ), and insoluble fibrillar Aβ (fAβ) occurs in TgCRND8 mice expressing a double-mutant form (Swedish and Indiana) of APP, later leading to greater progressive impairment of the brain. In this study, we generated SH-SY5Y cells stably transfected separately with wild-type APP, the Swedish mutation of APP, and the Swedish and Indiana mutations of APP and evaluated the APP expression as well as the Aβ42/40 ratio in those cells. The double-mutant form of APP (Swedish/Indiana) expressed markedly high levels of APP protein and showed a high Aβ2/40 ratio compared to wild-type and single-mutant cells.
    Matched MeSH terms: Cell Line, Tumor
  8. Kiew LV, Cheah HY, Voon SH, Gallon E, Movellan J, Ng KH, et al.
    Nanomedicine, 2017 05;13(4):1447-1458.
    PMID: 28214608 DOI: 10.1016/j.nano.2017.02.002
    In photodynamic therapy (PDT), the low absorptivity of photosensitizers in an aqueous environment reduces singlet oxygen generation efficiency and thereby decreases photosensitizing efficacy in biological conditions. To circumvent this problem, we designed a phthalocyanine-poly-L-glutamic acid conjugate (1-PG) made from a new phthalocyanine (Pc 1) monofunctionalized to allow adequate conjugation to PGA. The resulting 1-PG conjugate retained high absorptivity in the near-infrared (NIR) region at its λmax675nm in an aqueous environment. The 1-PG conjugate demonstrated good singlet oxygen generation efficiency, increased uptake by 4 T1 breast cancer cells via clathrin-mediated endocytosis, and enhanced photocytotoxic efficacy. The conjugate also displayed a high light-dark toxicity ratio, approximately 1.5-fold greater than zinc phthalocyanine at higher concentration (10 μM), an important feature for the reduction of dark toxicity and unwanted side effects. These results suggest that the 1-PG conjugate could be a useful alternative for deep tissue treatment with enhanced anti-cancer (PDT) efficacy.
    Matched MeSH terms: Cell Line, Tumor
  9. Baharudin R, Ab Mutalib NS, Othman SN, Sagap I, Rose IM, Mohd Mokhtar N, et al.
    Front Pharmacol, 2017;8:47.
    PMID: 28243201 DOI: 10.3389/fphar.2017.00047
    Resistance to 5-Fluorouracil (5-FU) is a major obstacle to the successful treatment of colorectal cancer (CRC) and posed an increased risk of recurrence. DNA methylation has been suggested as one of the underlying mechanisms for recurrent disease and its contribution to the development of drug resistance remains to be clarified. This study aimed to determine the methylation phenotype in CRC for identification of predictive markers for chemotherapy response. We performed DNA methylation profiling on 43 non-recurrent and five recurrent CRC patients using the Illumina Infinium HumanMethylation450 Beadchip assay. In addition, CRC cells with different genetic backgrounds, response to 5-FU and global methylation levels (HT29 and SW48) were treated with 5-FU and DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-azadC). The singular and combined effects of these two drug classes on cell viability and global methylation profiles were investigated. Our genome-wide methylation study on the clinical specimens showed that recurrent CRCs exhibited higher methylation levels compared to non-recurrent CRCs. We identified 4787 significantly differentially methylated genes (P < 0.05); 3112 genes were hyper- while 1675 genes were hypomethylated in the recurrent group compared to the non-recurrent. Fifty eight and 47 of the significantly hypermethylated and hypomethylated genes have an absolute recurrent/non-recurrent methylation difference of ≥20%. Most of the hypermethylated genes were involved in the MAPK signaling pathway which is a key regulator for apoptosis while the hypomethylated genes were involved in the PI3K-AKT signaling pathway and proliferation process. We also demonstrate that 5-azadC treatment enhanced response to 5-FU which resulted in significant growth inhibition compared to 5-FU alone in hypermethylated cell lines SW48. In conclusion, we found the evidence of five potentially biologically important genes in recurrent CRCs that could possibly serve as a new potential therapeutic targets for patients with chemoresistance. We postulate that aberrant methylation of CCNEI, CCNDBP1, PON3, DDX43, and CHL1 in CRC might be associated with the recurrence of CRC and 5-azadC-mediated restoration of 5-FU sensitivity is mediated at least in part by MAPK signaling pathway.
    Matched MeSH terms: Cell Line
  10. Shakya R, Tarulli GA, Sheng L, Lokman NA, Ricciardelli C, Pishas KI, et al.
    Oncogene, 2017 08;36(31):4469-4480.
    PMID: 28368395 DOI: 10.1038/onc.2017.66
    Missense mutations in the TP53 tumor-suppressor gene inactivate its antitumorigenic properties and endow the incipient cells with newly acquired oncogenic properties that drive invasion and metastasis. Although the oncogenic effect of mutant p53 transcriptome has been widely acknowledged, the global influence of mutant p53 on cancer cell proteome remains to be fully elucidated. Here, we show that mutant p53 drives the release of invasive extracellular factors (the 'secretome') that facilitates the invasion of lung cancer cell lines. Proteomic characterization of the secretome from mutant p53-inducible H1299 human non-small cell lung cancer cell line discovered that the mutant p53 drives its oncogenic pathways through modulating the gene expression of numerous targets that are subsequently secreted from the cells. Of these genes, alpha-1 antitrypsin (A1AT) was identified as a critical effector of mutant p53 that drives invasion in vitro and in vivo, together with induction of epithelial-mesenchymal transition markers expression. Mutant p53 upregulated A1AT transcriptionally through the involvement with its family member p63. Conditioned medium containing secreted A1AT enhanced cell invasion, while an A1AT-blocking antibody attenuated the mutant p53-driven migration and invasion. Importantly, high A1AT expression correlated with increased tumor stage, elevated p53 staining and shorter overall survival in lung adenocarcinoma patients. Collectively, these findings suggest that A1AT is an indispensable target of mutant p53 with prognostic and therapeutic potential in mutant p53-expressing tumors.
    Matched MeSH terms: Cell Line, Tumor
  11. Safi N, Haghani A, Ng SW, Selvarajah GT, Mustaffa-Kamal F, Omar AR
    BMC Vet Res, 2017 Apr 07;13(1):92.
    PMID: 28388950 DOI: 10.1186/s12917-017-1019-2
    BACKGROUND: There are two biotypes of feline coronavirus (FCoV): the self-limiting feline enteric coronavirus (FECV) and the feline infectious peritonitis virus (FIPV), which causes feline infectious peritonitis (FIP), a fatal disease associated with cats living in multi-cat environments. This study provides an insight on the various immune mediators detected in FCoV-positive cats which may be responsible for the development of FIP.

    RESULTS: In this study, using real-time PCR and multiplex bead-based immunoassay, the expression profiles of several immune mediators were examined in Crandell-Reese feline kidney (CRFK) cells infected with the feline coronavirus (FCoV) strain FIPV 79-1146 and in samples obtained from FCoV-positive cats. CRFK cells infected with FIPV 79-1146 showed an increase in the expression of interferon-related genes and pro-inflammatory cytokines such as MX1, viperin, CXCL10, CCL8, RANTES, KC, MCP1, and IL8. In addition, an increase in the expression of the above cytokines as well as GM-CSF and IFNγ was also detected in the PBMC, serum, and peritoneal effusions of FCoV-positive cats. Although the expression of MX1 and viperin genes was variable between cats, the expression of these two genes was relatively higher in cats having peritoneal effusion compared to cats without clinically obvious effusion. Higher viral load was also detected in the supernatant of peritoneal effusions compared to in the plasma of FCoV-positive cats. As expected, the secretion of IL1β, IL6 and TNFα was readily detected in the supernatant of peritoneal effusions of the FCoV-positive cats.

    CONCLUSIONS: This study has identified various pro-inflammatory cytokines and interferon-related genes such as MX1, viperin, CXCL10, CCL8, RANTES, KC, MCP1, IL8, GM-CSF and IFNγ in FCoV-positive cats. With the exception of MX1 and viperin, no distinct pattern of immune mediators was observed that distinguished between FCoV-positive cats with and without peritoneal effusion. Further studies based on definitive diagnosis of FIP need to be performed to confirm the clinical importance of this study.

    Matched MeSH terms: Cell Line
  12. Verusingam ND, Yeap SK, Ky H, Paterson IC, Khoo SP, Cheong SK, et al.
    PeerJ, 2017;5:e3174.
    PMID: 28417059 DOI: 10.7717/peerj.3174
    Although numbers of cancer cell lines have been shown to be successfully reprogrammed into induced pluripotent stem cells (iPSCs), reprogramming Oral Squamous Cell Carcinoma (OSCC) to pluripotency in relation to its cancer cell type and the expression pattern of pluripotent genes under later passage remain unexplored. In our study, we reprogrammed and characterised H103 and H376 oral squamous carcinoma cells using retroviral OSKM mediated method. Reprogrammed cells were characterized for their embryonic stem cells (ESCs) like morphology, pluripotent gene expression via quantitative real-time polymerase chain reaction (RT-qPCR), immunofluorescence staining, embryoid bodies (EB) formation and directed differentiation capacity. Reprogrammed H103 (Rep-H103) exhibited similar ESCs morphologies with flatten cells and clear borders on feeder layer. Reprogrammed H376 (Rep-H376) did not show ESCs morphologies but grow with a disorganized morphology. Critical pluripotency genes Oct4, Sox2 and Nanog were expressed higher in Rep-H103 against the parental counterpart from passage 5 to passage 10. As for Rep-H376, Nanog expression against its parental counterpart showed a significant decrease at passage 5 and although increased in passage 10, the level of expression was similar to the parental cells. Rep-H103 exhibited pluripotent signals (Oct4, Sox2, Nanog and Tra-1-60) and could form EB with the presence of three germ layers markers. Rep-H103 displayed differentiation capacity into adipocytes and osteocytes. The OSCC cell line H103 which was able to be reprogrammed into an iPSC like state showed high expression of Oct4, Sox2 and Nanog at late passage and may provide a potential iPSC model to study multi-stage oncogenesis in OSCC.
    Matched MeSH terms: Cell Line
  13. Tang YQ, Lee SH, Sekaran SD
    JUMMEC, 2014;17(2):1-8.
    MyJurnal
    The plants of the genus Phyllanthus (Euphorbiaceae) are distributed in most tropical and subtropical regions of world. This plant has been long used as a traditional medicine to treat problems such as stomach, intestinal infections, kidney and urinary bladder disturbances, diabetes, and hepatitis B. There has been considerable interest in these plants in recent years. This review discusses the antiviral and anticancer aspects of Phyllanthus species. Scientific studies have demonstrated that extracts and purified isolated compounds (flavonoids, lignans, phenols, and terpenes) obtained from these plants possess antiviral effects against herpes simplex (HSV) and dengue virus infections (DENV). These observations are associated with the disruption of essential proteins needed during viral cycle, thus halting the viral replication. In addition, the Phyllanthus species have also been shown to exert inhibitory effects against selected cancers types. In these studies anti-proliferative, anti-metastatic, anti-angiogenic effects and induced apoptosis of human cancers cell lines were observed. These may be explained by the disruption of multiple survival pathways and differential protein expression. CONLCUSION:As a conclusion, tThe Phyllanthus plant possesses multiple medicinal properties, including antiviral and anticancer activities which may potentially be used as a medicinal source for many disease locally.
    Matched MeSH terms: Cell Line
  14. Kalyanasundram J, Hamid A, Yusoff K, Chia SL
    Acta Trop, 2018 Jul;183:126-133.
    PMID: 29626432 DOI: 10.1016/j.actatropica.2018.04.007
    The discovery of tumour selective virus-mediated apoptosis marked the birth of an alternative cancer treatment in the form of oncolytic viruses. Even though, its oncolytic efficiency was demonstrated more than 50 years ago, safety concerns which resulted from mild to lethal side effects hampered the progress of oncolytic virus research. Since the classical oncolytic virus studies rely heavily on its natural oncolytic ability, virus manipulation was limited, thereby, restricted efforts to improve its safety. In order to circumvent such restriction, experiments involving non-human viruses such as the avian Newcastle disease virus (NDV) was conducted using cultured cells, animal models and human subjects. The corresponding reports on its significant tumour cytotoxicity along with impressive safety profile initiated immense research interest in the field of oncolytic NDV. The varying degree of oncolytic efficiency and virulency among NDV strains encouraged researchers from all around the world to experiment with their respective local NDV isolates in order to develop an oncolytic virus with desirable characteristics. Such desirable features include high tumour-killing ability, selectivity and low systemic cytotoxicity. The Malaysian field outbreak isolate, NDV strain AF2240, also currently, receives significant research attention. Apart from its high cytotoxicity against tumour cells, this strain also provided fundamental insight into NDV-mediated apoptosis mechanism which involves Bax protein recruitment as well as death receptor engagement. Studies on its ability to selectively induce apoptosis in tumour cells also resulted in a proposed p38 MAPK/NF-κB/IκBα pathway. The immunogenicity of AF2240 was also investigated through PBMC stimulation and macrophage infection. In addition, the enhanced oncolytic ability of this strain under hypoxic condition signifies its dynamic tumour tropism. This review is aimed to introduce and discuss the aforementioned details of the oncolytic AF2240 strain along with its current challenges which outlines the future research direction of this virus.
    Matched MeSH terms: Cell Line, Tumor
  15. Asmawi AA, Salim N, Ngan CL, Ahmad H, Abdulmalek E, Masarudin MJ, et al.
    Drug Deliv Transl Res, 2019 04;9(2):543-554.
    PMID: 29691812 DOI: 10.1007/s13346-018-0526-4
    Docetaxel has demonstrated extraordinary anticancer effects on lung cancer. However, lack of optimal bioavailability due to poor solubility and high toxicity at its therapeutic dose has hampered the clinical use of this anticancer drug. Development of nanoemulsion formulation along with biocompatible excipients aimed for pulmonary delivery is a potential strategy to deliver this poorly aqueous soluble drug with improved bioavailability and biocompatibility. In this work, screening and selection of pharmaceutically acceptable excipients at their minimal optimal concentration have been conducted. The selected nanoemulsion formulations were prepared using high-energy emulsification technique and subjected to physicochemical and aerodynamic characterizations. The formulated nanoemulsion had mean particle size and ζ-potential in the range of 90 to 110 nm and - 30 to - 40 mV respectively, indicating high colloidal stability. The pH, osmolality, and viscosity of the systems met the ideal requirement for pulmonary application. The DNE4 formulation exhibited slow drug release and excellent stability even under the influence of extreme environmental conditions. This was further confirmed by transmission electron microscopy as uniform spherical droplets in nanometer range were observed after storage at 45 ± 1 °C for 3 months indicating high thermal stability. The nebulized DNE4 exhibited desirable aerosolization properties for pulmonary delivery application and found to be more selective on human lung carcinoma cell (A549) than normal cell (MRC-5). Hence, these characteristics make the formulation a great candidate for the potential use as a carrier system for docetaxel in targeting lung cancer via pulmonary delivery.
    Matched MeSH terms: Cell Line
  16. Dong J, Tao L, Abourehab MAS, Hussain Z
    Int J Biol Macromol, 2018 Sep;116:1268-1281.
    PMID: 29782984 DOI: 10.1016/j.ijbiomac.2018.05.116
    Osteoporosis is a medical condition of fragile bones with an increased susceptibility to fracture. Despite having availability of a wide range of pharmacological agents, prevalence of osteoporosis is continuously escalating. Owing to excellent biomedical achievements of nanomedicines in the last few decades, we aimed combo-delivery of bone anti-resorptive agent, alendronate (ALN), and bone density enhancing drug, curcumin (CUR) in the form of polymeric nanoparticles. To further optimize the therapeutic efficacy, the prepared ALN/CUR nanoparticles (NPs) were decorated with hyaluronic acid (HA) which is a well-documented biomacromolecule having exceptional bone regenerating potential. The optimized nanoformulation was then evaluated for bone regeneration efficacy by assessing time-mannered modulation in the proliferation, differentiation, and mineralization of MC3T3-E1 cells, a pre-osteoblastic model. Moreover, the time-mannered expression of various bone-forming protein biomarkers such as bone morphogenetic protein, runt related transcription factor 2, and osteocalcin were assessed in the cell lysates. Results revealed that HA-ALN/CUR NPs provoke remarkable increase in the proliferation, differentiation, and mineralization in the ECM of MC3T3-E1 cells which ultimately leads to enhanced bone formation. This new strategy of employing simultaneous delivery of anti-resorptive and bone forming agents would open new horizons for scientists as an efficient alternative pharmacotherapy for the management of osteoporosis.
    Matched MeSH terms: Cell Line
  17. Thriumani R, Zakaria A, Hashim YZH, Jeffree AI, Helmy KM, Kamarudin LM, et al.
    BMC Cancer, 2018 04 02;18(1):362.
    PMID: 29609557 DOI: 10.1186/s12885-018-4235-7
    BACKGROUND: Volatile organic compounds (VOCs) emitted from exhaled breath from human bodies have been proven to be a useful source of information for early lung cancer diagnosis. To date, there are still arguable information on the production and origin of significant VOCs of cancer cells. Thus, this study aims to conduct in-vitro experiments involving related cell lines to verify the capability of VOCs in providing information of the cells.

    METHOD: The performances of e-nose technology with different statistical methods to determine the best classifier were conducted and discussed. The gas sensor study has been complemented using solid phase micro-extraction-gas chromatography mass spectrometry. For this purpose, the lung cancer cells (A549 and Calu-3) and control cell lines, breast cancer cell (MCF7) and non-cancerous lung cell (WI38VA13) were cultured in growth medium.

    RESULTS: This study successfully provided a list of possible volatile organic compounds that can be specific biomarkers for lung cancer, even at the 24th hour of cell growth. Also, the Linear Discriminant Analysis-based One versus All-Support Vector Machine classifier, is able to produce high performance in distinguishing lung cancer from breast cancer cells and normal lung cells.

    CONCLUSION: The findings in this work conclude that the specific VOC released from the cancer cells can act as the odour signature and potentially to be used as non-invasive screening of lung cancer using gas array sensor devices.

    Matched MeSH terms: Cell Line, Tumor
  18. Kabir MF, Mohd Ali J, Abolmaesoomi M, Hashim OH
    BMC Complement Altern Med, 2017 May 05;17(1):252.
    PMID: 28476158 DOI: 10.1186/s12906-017-1761-9
    BACKGROUND: Melicope ptelefolia is a well-known herb in a number of Asian countries. It is often used as vegetable salad and traditional medicine to address various ailments. However, not many studies have been currently done to evaluate the medicinal benefits of M. ptelefolia (MP). The present study reports antioxidant, anti-proliferative, and apoptosis induction activities of MP leaf extracts.

    METHOD: Young MP leaves were dried, powdered and extracted sequentially using hexane (HX), ethyl acetate (EA), methanol (MeOH) and water (W). Antioxidant activity was evaluated using ferric reducing antioxidant power (FRAP), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) radicals scavenging and cellular antioxidant activity (CAA) assays. Anti-proliferative activity was evaluated through cell viability assay, using the following four human cancer cell lines: breast (HCC1937, MDA-MB-231), colorectal (HCT116) and liver (HepG2). The anti-proliferative activity was further confirmed through cell cycle and apoptosis assays, including annexin-V/7-aminoactinomycin D staining and measurements of caspase enzymes activation and inhibition.

    RESULT: Overall, MP-HX extract exhibited the highest antioxidant potential, with IC50 values of 267.73 ± 5.58 and 327.40 ± 3.80 μg/mL for ABTS and DPPH radical-scavenging assays, respectively. MP-HX demonstrated the highest CAA activity in Hs27 cells, with EC50 of 11.30 ± 0.68 μg/mL, while MP-EA showed EC50 value of 37.32 ± 0.68 μg/mL. MP-HX and MP-EA showed promising anti-proliferative activity towards the four cancer cell lines, with IC50 values that were mostly below 100 μg/mL. MP-HX showed the most notable anti-proliferative activity against MDA-MB-231 (IC50 = 57.81 ± 3.49 μg/mL) and HCT116 (IC50 = 58.04 ± 0.96 μg/mL) while MP-EA showed strongest anti-proliferative activity in HCT116 (IC50 = 64.69 ± 0.72 μg/mL). The anticancer potential of MP-HX and MP-EA were also demonstrated by their ability to induce caspase-dependent apoptotic cell death in all of the cancer cell lines tested. Cell cycle analysis suggested that both the MP-HX and MP-EA extracts were able to disrupt the cell cycle in most of the cancer cell lines.

    CONCLUSIONS: MP-HX and MP-EA extracts demonstrated notable antioxidant, anti-proliferative, apoptosis induction and cancer cell cycle inhibition activities. These findings reflect the promising potentials of MP to be a source of novel phytochemical(s) with health promoting benefits that are also valuable for nutraceutical industry and cancer therapy.

    Matched MeSH terms: Cell Line, Tumor
  19. Lou Y, Shi J, Guo D, Qureshi AK, Song L
    Saudi J Biol Sci, 2017 May;24(4):803-807.
    PMID: 28490949 DOI: 10.1016/j.sjbs.2015.06.025
    Human glioma is a highly fatal tumor with a significant feature of immune suppression. The functions of PD-L1 refer to co-simulation and immune regulation. To investigate expression and functional activity of PD-L1 in human glioma cell in vivo and in vitro. Expressions of PD-L1mRNA and protein in the human glioma cell line were analyzed with quantitative RT-PCR and flow cytometer; and then expression of PD-L1 in tissue specimens of 10 glioma patients was treated with immunohistochemical analysis; glioma cell and allogeneic CD4+ and CD8+ T cells were co-cultured, and cytokine IFN-γ, IL-2 and IL-10 in cultured supernatant fluid were determined with ELISA; upon blocking the interaction between glioma cell and the immune cell with PD-L1 monoclonal antibody (5H1), surface markers on immune cells were analyzed using flow cytometer. All human glioma cell lines constitutively expressed PD-L1, and IFN-γ induced glioma cell to highly express PD-L1. It was shown through immunohistochemical analysis that glioma specimen expressed PD-L1, while expression of PD-L1 was not observed in normal tissue and normal human brain near the tumor location. The release of IFN-γ and IL-2 was inhibited, while IL-10 was increased slightly. Glioma cell may escape from immune recognition and injury with the help of PD-L1, which is a significant pathogenic mechanism of glioma.
    Matched MeSH terms: Cell Line
  20. Balakrishnan KN, Abdullah AA, Bala J, Abba Y, Sarah SA, Jesse FFA, et al.
    Infect Genet Evol, 2017 10;54:81-90.
    PMID: 28642159 DOI: 10.1016/j.meegid.2017.06.020
    BACKGROUND: Rat cytomegalovirus ALL-03 (Malaysian strain) which was isolated from a placenta and uterus of a house rat, Rattus rattus diardii has the ability to cross the placenta and infecting the fetus. To further elucidate the pathogenesis of the Malaysian strain of Rat Cytomegalovirus ALL-03 (RCMV ALL-03), detailed analysis on the viral genome sequence is crucial.

    METHODS: Genome sequencing of RCMV ALL-03 was carried out in order to identify the open reading frame (ORF), homology comparison of ORF with other strains of CMV, phylogenetic analysis, classifying ORF with its corresponding conserved genes, and determination of functional proteins and grouping of gene families in order to obtain fundamental knowledge of the genome.

    RESULTS: The present study revealed a total of 123 Coding DNA sequences (CDS) from RCMV ALL-03 with 37 conserved ORF domains as with all herpesvirus genomes. All the CDS possess similar function with RCMV-England followed by RCMV-Berlin, RCMV-Maastricht, and Human CMV. The phylogenetic analysis of RCMV ALL-03 based on conserving genes of herpes virus showed that the Malaysian RCMV isolate is closest to RCMV-English and RCMV-Berlin strains, with 99% and 97% homology, respectively. Similarly, it also demonstrated an evolutionary relationship between RCMV ALL-03 and other strains of herpesviruses from all the three subfamilies. Interestingly, betaherpesvirus subfamily, which has been shown to be more closely related with gammaherpesviruses as compared to alphaherpesviruses, shares some of the functional ORFs. In addition, the arrangement of gene blocks for RCMV ALL-03, which was conserved among herpesvirus family members was also observed in the RCMV ALL-03 genome.

    CONCLUSION: Genomic analysis of RCMV ALL-03 provided an overall picture of the whole genome organization and it served as a good platform for further understanding on the divergence in the family of Herpesviridae.

    Matched MeSH terms: Cell Line
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links