Displaying publications 521 - 540 of 668 in total

Abstract:
Sort:
  1. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2018;78(2):140.
    PMID: 31265001 DOI: 10.1140/epjc/s10052-018-5607-5
    A search for standard model production of four top quarks ( t t ¯ t t ¯ ) is reported using events containing at least three leptons ( e , μ ) or a same-sign lepton pair. The events are produced in proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, and the data sample, recorded in 2016, corresponds to an integrated luminosity of 35.9 fb - 1 . Jet multiplicity and flavor are used to enhance signal sensitivity, and dedicated control regions are used to constrain the dominant backgrounds. The observed and expected signal significances are, respectively, 1.6 and 1.0 standard deviations, and the t t ¯ t t ¯ cross section is measured to be 16 . 9 - 11.4 + 13.8 fb , in agreement with next-to-leading-order standard model predictions. These results are also used to constrain the Yukawa coupling between the top quark and the Higgs boson to be less than 2.1 times its expected standard model value at 95% confidence level.
  2. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2018;78(4):291.
    PMID: 31007582 DOI: 10.1140/epjc/s10052-018-5740-1
    A search for new physics in events with a Z boson produced in association with large missing transverse momentum at the LHC is presented. The search is based on the 2016 data sample of proton-proton collisions recorded with the CMS experiment at s = 13 TeV , corresponding to an integrated luminosity of 35.9 fb - 1 . The results of this search are interpreted in terms of a simplified model of dark matter production via spin-0 or spin-1 mediators, a scenario with a standard-model-like Higgs boson produced in association with the Z boson and decaying invisibly, a model of unparticle production, and a model with large extra spatial dimensions. No significant deviations from the background expectations are found, and limits are set on relevant model parameters, significantly extending the results previously achieved in this channel.
  3. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Eur Phys J C Part Fields, 2018;78(3):242.
    PMID: 31264999 DOI: 10.1140/epjc/s10052-018-5691-6
    Events with no charged particles produced between the two leading jets are studied in proton-proton collisions at s = 7 TeV . The jets were required to have transverse momentum p T jet > 40 GeV and pseudorapidity 1.5 < | η jet | < 4.7 , and to have values of η jet with opposite signs. The data used for this study were collected with the CMS detector during low-luminosity running at the LHC, and correspond to an integrated luminosity of 8 pb - 1 . Events with no charged particles with p T > 0.2 GeV in the interval - 1 < η < 1 between the jets are observed in excess of calculations that assume no color-singlet exchange. The fraction of events with such a rapidity gap, amounting to 0.5-1% of the selected dijet sample, is measured as a function of the p T of the second-leading jet and of the rapidity separation between the jets. The data are compared to previous measurements at the Tevatron, and to perturbative quantum chromodynamics calculations based on the Balitsky-Fadin-Kuraev-Lipatov evolution equations, including different models of the non-perturbative gap survival probability.
  4. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Eur Phys J C Part Fields, 2017;77(11):746.
    PMID: 31999281 DOI: 10.1140/epjc/s10052-017-5286-7
    A measurement is presented of the triple-differential dijet cross section at a centre-of-mass energy of 8 TeV using 19.7 fb -1 of data collected with the CMS detector in proton-proton collisions at the LHC. The cross section is measured as a function of the average transverse momentum, half the rapidity separation, and the boost of the two leading jets in the event. The cross section is corrected for detector effects and compared to calculations in perturbative quantum chromodynamics at next-to-leading order accuracy, complemented with electroweak and nonperturbative corrections. New constraints on parton distribution functions are obtained and the inferred value of the strong coupling constant is α S ( M Z ) = 0.1199 ± 0.0015 ( exp ) - 0.0020 + 0.0031 ( theo ) , where M Z is the mass of the Z boson.
  5. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2018;78(4):287.
    PMID: 31007580 DOI: 10.1140/epjc/s10052-018-5752-x
    A study of the associated production of a Z boson and a charm quark jet ( Z + c ), and a comparison to production with a b quark jet ( Z + b ), in p p collisions at a centre-of-mass energy of 8 TeV are presented. The analysis uses a data sample corresponding to an integrated luminosity of 19.7 fb - 1 , collected with the CMS detector at the CERN LHC. The Z boson candidates are identified through their decays into pairs of electrons or muons. Jets originating from heavy flavour quarks are identified using semileptonic decays of c or b flavoured hadrons and hadronic decays of charm hadrons. The measurements are performed in the kinematic region with two leptons with p T ℓ > 20 GeV , | η ℓ | < 2.1 , 71 < m ℓ ℓ < 111 GeV , and heavy flavour jets with p T jet > 25 GeV and | η jet | < 2.5 . The Z + c production cross section is measured to be σ ( p p → Z + c + X ) B ( Z → ℓ + ℓ - ) = 8.8 ± 0.5 (stat) ± 0.6 (syst) pb . The ratio of the Z + c and Z + b production cross sections is measured to be σ ( p p → Z + c + X ) / σ ( p p → Z + b + X ) = 2.0 ± 0.2 (stat) ± 0.2 (syst) . The Z + c production cross section and the cross section ratio are also measured as a function of the transverse momentum of the Z boson and of the heavy flavour jet. The measurements are compared with theoretical predictions.
  6. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, et al.
    Eur Phys J C Part Fields, 2019;79(11):893.
    PMID: 31886779 DOI: 10.1140/epjc/s10052-019-7402-3
    The average total energy as well as its hadronic and electromagnetic components are measured with the CMS detector at pseudorapidities - 6.6 < η < - 5.2 in proton-proton collisions at a centre-of-mass energy s = 13 TeV . The results are presented as a function of the charged particle multiplicity in the region | η | < 2 . This measurement is sensitive to correlations induced by the underlying event structure over a very wide pseudorapidity region. The predictions of Monte Carlo event generators commonly used in collider experiments and ultra-high energy cosmic ray physics are compared to the data. All generators considered overestimate the fraction of energy going into hadrons.
  7. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2018;78(11):939.
    PMID: 30881211 DOI: 10.1140/epjc/s10052-018-6390-z
    Measurements of B s 2 ∗ ( 5840 ) 0 and B s 1 ( 5830 ) 0 mesons are performed using a data sample of proton-proton collisions corresponding to an integrated luminosity of , collected with the CMS detector at the LHC at a centre-of-mass energy of 8 TeV . The analysis studies P-wave B s 0 meson decays into B ( ∗ ) + K - and B ( ∗ ) 0 K S 0 , where the B + and B 0 mesons are identified using the decays B + → J / ψ K + and B 0 → J / ψ K ∗ ( 892 ) 0 . The masses of the P-wave B s 0 meson states are measured and the natural width of the B s 2 ∗ ( 5840 ) 0 state is determined. The first measurement of the mass difference between the charged and neutral B ∗ mesons is also presented. The B s 2 ∗ ( 5840 ) 0 decay to B 0 K S 0 is observed, together with a measurement of its branching fraction relative to the B s 2 ∗ ( 5840 ) 0 → B + K - decay.
  8. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(7):372.
    PMID: 28280445 DOI: 10.1140/epjc/s10052-016-4205-7
    Inclusive jet production in pPb collisions at a nucleon-nucleon (NN) center-of-mass energy of [Formula: see text] is studied with the CMS detector at the LHC. A data sample corresponding to an integrated luminosity of 30.1 nb[Formula: see text] is analyzed. The jet transverse momentum spectra are studied in seven pseudorapidity intervals covering the range [Formula: see text] in the NN center-of-mass frame. The jet production yields at forward and backward pseudorapidity are compared and no significant asymmetry about [Formula: see text] is observed in the measured kinematic range. The measurements in the pPb system are compared to reference jet spectra obtained by extrapolation from previous measurements in pp collisions at [Formula: see text]. In all pseudorapidity ranges, nuclear modifications in inclusive jet production are found to be small, as predicted by next-to-leading order perturbative QCD calculations that incorporate nuclear effects in the parton distribution functions.
  9. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(8):702.
    PMID: 31524889 DOI: 10.1140/epjc/s10052-019-7202-9
    Exclusive ρ 770 0 photoproduction is measured for the first time in ultraperipheral pPb collisions at s NN = 5.02 Te with the CMS detector. The cross section σ ( γ p → ρ 770 0 p ) is 11.0 ± 1.4 (stat) ± 1.0 (syst) μ b at ⟨ W γ p ⟩ = 92.6 Ge for photon-proton centre-of-mass energies W γ p between 29 and 213 Ge . The differential cross section d σ / d | t | is measured in the interval 0.025 < | t | < 1 Ge 2 as a function of W γ p , where t is the squared four-momentum transfer at the proton vertex. The results are compared with previous measurements and theoretical predictions. The measured cross section σ ( γ p → ρ 770 0 p ) has a power-law dependence on the photon-proton centre-of-mass, consistent with electron-proton collision measurements performed at HERA. The W γ p dependence of the exponential slope of the differential cross section d σ / d | t | is also measured.
  10. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2018;78(9):708.
    PMID: 30956559 DOI: 10.1140/epjc/s10052-018-6146-9
    A measurement is presented of the Z / γ ∗ → τ τ cross section in pp collisions at s = 13 TeV , using data recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 2.3 fb - 1 . The product of the inclusive cross section and branching fraction is measured to be σ ( pp → Z / γ ∗ +X ) B ( Z / γ ∗ → τ τ ) = 1848 ± 12 ( stat ) ± 67 (syst \,+\,lumi) pb , in agreement with the standard model expectation, computed at next-to-next-to-leading order accuracy in perturbative quantum chromodynamics. The measurement is used to validate new analysis techniques relevant for future measurements of τ lepton production. The measurement also provides the reconstruction efficiency and energy scale for τ decays to hadrons + ν τ final states, determined with respective relative uncertainties of 2.2 and 0.9%.
  11. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2018;78(2):165.
    PMID: 30996656 DOI: 10.1140/epjc/s10052-018-5567-9
    Four-lepton production in proton-proton collisions, p p → ( Z / γ ∗ ) ( Z / γ ∗ ) → 4 ℓ , where ℓ = e or μ , is studied at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb - 1 . The ZZ production cross section, σ ( p p → Z Z ) = 17.2 ± 0.5 (stat) ± 0.7 (syst) ± 0.4 (theo) ± 0.4 (lumi) pb , measured using events with two opposite-sign, same-flavor lepton pairs produced in the mass region 60 < m ℓ + ℓ - < 120 GeV , is consistent with standard model predictions. Differential cross sections are measured and are well described by the theoretical predictions. The Z boson branching fraction to four leptons is measured to be B ( Z → 4 ℓ ) = 4 . 83 - 0.22 + 0.23 ( s t a t ) - 0.29 + 0.32 ( s y s t ) ± 0.08 ( t h e o ) ± 0.12 ( l u m i ) × 10 - 6 for events with a four-lepton invariant mass in the range 80 < m 4 ℓ < 100 GeV and a dilepton mass m ℓ ℓ > 4 GeV for all opposite-sign, same-flavor lepton pairs. The results agree with standard model predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous ZZZ and ZZ γ couplings at 95% confidence level: - 0.0012 < f 4 Z < 0.0010 , - 0.0010 < f 5 Z < 0.0013 , - 0.0012 < f 4 γ < 0.0013 , - 0.0012 < f 5 γ < 0.0013 .
  12. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2018;78(6):457.
    PMID: 30956548 DOI: 10.1140/epjc/s10052-018-5929-3
    Measurements are presented of the lifetimes of the B 0 , B s 0 , Λ b 0 , and B c + hadrons using the decay channels B 0 → J / ψ K ∗ ( 892 ) 0 , B 0 → J / ψ K S 0 , B s 0 → J / ψ π + π - , B s 0 → J / ψ ϕ ( 1020 ) , Λ b 0 → J / ψ Λ 0 , and B c + → J / ψ π + . The data sample, corresponding to an integrated luminosity of 19.7 fb -1 , was collected by the CMS detector at the LHC in proton-proton collisions at s = 8 TeV . The B 0 lifetime is measured to be 453.0 ± 1.6 (stat) ± 1.8 (syst) μ m in J / ψ K ∗ ( 892 ) 0 and 457.8 ± 2.7 (stat) ± 2.8 (syst) μ m in J / ψ K S 0 , which results in a combined measurement of c τ B 0 = 454.1 ± 1.4 (stat) ± 1.7 (syst) μ m . The effective lifetime of the B s 0 meson is measured in two decay modes, with contributions from different amounts of the heavy and light eigenstates. This results in two different measured lifetimes: c τ B s 0 → J / ψ π + π - = 502.7 ± 10.2 (stat) ± 3.4 (syst) μ m and c τ B s 0 → J / ψ ϕ ( 1020 ) = 443.9 ± 2.0 (stat) ± 1.5 (syst) μ m . The Λ b 0 lifetime is found to be 442.9 ± 8.2 (stat) ± 2.8 (syst) μ m . The precision from each of these channels is as good as or better than previous measurements. The B c + lifetime, measured with respect to the B + to reduce the systematic uncertainty, is 162.3 ± 7.8 (stat) ± 4.2 (syst) ± 0.1 ( τ B + ) μ m . All results are in agreement with current world-average values.
  13. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, et al.
    Eur Phys J C Part Fields, 2015 06 09;75(6):251.
    PMID: 26097407
    A search for a standard model Higgs boson produced in association with a top-quark pair and decaying to bottom quarks is presented. Events with hadronic jets and one or two oppositely charged leptons are selected from a data sample corresponding to an integrated luminosity of 19.5[Formula: see text] collected by the CMS experiment at the LHC in [Formula: see text] collisions at a centre-of-mass energy of 8[Formula: see text]. In order to separate the signal from the larger [Formula: see text]  + jets background, this analysis uses a matrix element method that assigns a probability density value to each reconstructed event under signal or background hypotheses. The ratio between the two values is used in a maximum likelihood fit to extract the signal yield. The results are presented in terms of the measured signal strength modifier, [Formula: see text], relative to the standard model prediction for a Higgs boson mass of 125[Formula: see text]. The observed (expected) exclusion limit at a 95 % confidence level is [Formula: see text] (3.3), corresponding to a best fit value [Formula: see text].
  14. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, et al.
    Eur Phys J C Part Fields, 2015 05 14;75(5):212.
    PMID: 25999783
    Properties of the Higgs boson with mass near 125[Formula: see text] are measured in proton-proton collisions with the CMS experiment at the LHC. Comprehensive sets of production and decay measurements are combined. The decay channels include [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] pairs. The data samples were collected in 2011 and 2012 and correspond to integrated luminosities of up to 5.1[Formula: see text] at 7[Formula: see text] and up to 19.7[Formula: see text] at 8[Formula: see text]. From the high-resolution [Formula: see text] and [Formula: see text] channels, the mass of the Higgs boson is determined to be [Formula: see text]. For this mass value, the event yields obtained in the different analyses tagging specific decay channels and production mechanisms are consistent with those expected for the standard model Higgs boson. The combined best-fit signal relative to the standard model expectation is [Formula: see text] at the measured mass. The couplings of the Higgs boson are probed for deviations in magnitude from the standard model predictions in multiple ways, including searches for invisible and undetected decays. No significant deviations are found.
  15. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, et al.
    Eur Phys J C Part Fields, 2015 05 01;75(5):186.
    PMID: 25983654
    This paper presents a measurement of the inclusive 3-jet production differential cross section at a proton-proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5[Formula: see text]collected with the CMS detector. The analysis is based on the three jets with the highest transverse momenta. The cross section is measured as a function of the invariant mass of the three jets in a range of 445-3270 GeV and in two bins of the maximum rapidity of the jets up to a value of 2. A comparison between the measurement and the prediction from perturbative QCD at next-to-leading order is performed. Within uncertainties, data and theory are in agreement. The sensitivity of the observable to the strong coupling constant [Formula: see text] is studied. A fit to all data points with 3-jet masses larger than 664 GeV gives a value of the strong coupling constant of [Formula: see text].
  16. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, et al.
    Eur Phys J C Part Fields, 2015 05 29;75(5):235.
    PMID: 26069461
    Results are presented from a search for particle dark matter (DM), extra dimensions, and unparticles using events containing a jet and an imbalance in transverse momentum. The data were collected by the CMS detector in proton-proton collisions at the LHC and correspond to an integrated luminosity of 19.7[Formula: see text]at a centre-of-mass energy of 8[Formula: see text]. The number of observed events is found to be consistent with the standard model prediction. Limits are placed on the DM-nucleon scattering cross section as a function of the DM particle mass for spin-dependent and spin-independent interactions. Limits are also placed on the scale parameter [Formula: see text] in the Arkani-Hamed, Dimopoulos, and Dvali (ADD) model of large extra dimensions, and on the unparticle model parameter [Formula: see text]. The constraints on ADD models and unparticles are the most stringent limits in this channel and those on the DM-nucleon scattering cross section are an improvement over previous collider results.
  17. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(2):94.
    PMID: 30872972 DOI: 10.1140/epjc/s10052-019-6562-5
    A search is presented for decays of Z and Higgs bosons to a J / ψ meson and a photon, with the subsequent decay of the J / ψ to μ + μ - . The analysis uses data from proton-proton collisions with an integrated luminosity of 35.9 fb - 1 at s = 13 TeV collected with the CMS detector at the LHC. The observed limit on the Z → J / ψ γ decay branching fraction, assuming that the J / ψ meson is produced unpolarized, is 1.4 × 10 - 6 at 95% confidence level, which corresponds to a rate higher than expected in the standard model by a factor of 15. For extreme-polarization scenarios, the observed limit changes from - 13.6 to + 8.6 % with respect to the unpolarized scenario. The observed upper limit on the branching fraction for H → J / ψ γ where the J / ψ meson is assumed to be transversely polarized is 7.6 × 10 - 4 , a factor of 260 larger than the standard model prediction. The results for the Higgs boson are combined with previous data from proton-proton collisions at s = 8 TeV to produce an observed upper limit on the branching fraction for H → J / ψ γ that is a factor of 220 larger than the standard model value.
  18. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(2):123.
    PMID: 30863200 DOI: 10.1140/epjc/s10052-019-6620-z
    Measurements of normalized differential cross sections as functions of the multiplicity and kinematic variables of charged-particle tracks from the underlying event in top quark and antiquark pair production are presented. The measurements are performed in proton-proton collisions at a center-of-mass energy of 13 Te , and are based on data collected by the CMS experiment at the LHC in 2016 corresponding to an integrated luminosity of 35.9 fb - 1 . Events containing one electron, one muon, and two jets from the hadronization and fragmentation of b quarks are used. These measurements characterize, for the first time, properties of the underlying event in top quark pair production and show no deviation from the universality hypothesis at energy scales typically above twice the top quark mass.
  19. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2018;78(9):707.
    PMID: 30839784 DOI: 10.1140/epjc/s10052-018-6143-z
    A search for pair production of heavy scalar leptoquarks (LQs), each decaying into a top quark and a τ lepton, is presented. The search considers final states with an electron or a muon, one or two τ leptons that decayed to hadrons, and additional jets. The data were collected in 2016 in proton-proton collisions at s = 13 Te with the CMS detector at the LHC, and correspond to an integrated luminosity of 35.9 fb - 1 . No evidence for pair production of LQs is found. Assuming a branching fraction of unity for the decay LQ → t τ , upper limits on the production cross section are set as a function of LQ mass, excluding masses below 900 Ge at 95% confidence level. These results provide the most stringent limits to date on the production of scalar LQs that decay to a top quark and a τ lepton.
  20. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2018;78(9):697.
    PMID: 30839770 DOI: 10.1140/epjc/s10052-018-6144-y
    Pseudorapidity, transverse momentum, and multiplicity distributions are measured in the pseudorapidity range | η | < 2.4 for charged particles with transverse momenta satisfying p T > 0.5 GeV in proton-proton collisions at a center-of-mass energy of s = 13 TeV . Measurements are presented in three different event categories. The most inclusive of the categories corresponds to an inelastic p p data set, while the other two categories are exclusive subsets of the inelastic sample that are either enhanced or depleted in single diffractive dissociation events. The measurements are compared to predictions from Monte Carlo event generators used to describe high-energy hadronic interactions in collider and cosmic-ray physics.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links