Displaying publications 501 - 520 of 4087 in total

Abstract:
Sort:
  1. Tay Za K, Bee PC, Shanmugam H
    Pathology, 2020 Feb;52(2):273-276.
    PMID: 31883672 DOI: 10.1016/j.pathol.2019.10.013
    Matched MeSH terms: Nuclear Proteins/genetics*; Oncogene Proteins/genetics*
  2. Sankaran R, Bong JH, Chow YH, Wong FWF, Ling TC, Show PL
    Curr Protein Pept Sci, 2019 Jun 28.
    PMID: 31264547 DOI: 10.2174/1389203720666190628142203
    Reversed micellear system (RMS) is an innovative technique used for the isolation, extraction and purification of proteins and enzymes. Studies have demonstrated that RMS is an efficient purification technology for extracting proteins and enzymes from natural plant materials or fermentation broth. Lately, reverse micelles have created wider biological applications and with the ease of scaling up and the possibility for continuous process has made RMS a vital purification technique in various field. In this study, an extensive review of RMS with the current application in biotechnology will be examined. This review provides insights with the fundamental principles, key variables and parameters of RMS. In addition, a comparative study of RMS with other liquid-liquid extraction techniques are included. The present review aims to provide a general overview of RMS by summarising the research works, since the introduction of the technology to current development.
    Matched MeSH terms: Proteins
  3. Shirasuka Y, Nakajima K, Asakura T, Yamashita H, Yamamoto A, Hata S, et al.
    Biosci Biotechnol Biochem, 2004 Jun;68(6):1403-7.
    PMID: 15215616
    A unique taste-modifying activity that converts the sense of sourness to the sense of sweetness occurs in the fruit of the plant Curculigo latifolia, intrinsic to West Malaysia. The active component, known as curculin, is a protein consisting of two identical subunits. We have found a new taste-modifying protein, named neoculin, of the same origin. Both chemical analysis and cDNA cloning characterized neoculin as a heterodimeric protein consisting of an acidic, glycosylated subunit of 113 amino acid residues and a basic subunit that is the monomeric curculin itself.
    Matched MeSH terms: Plant Proteins/isolation & purification*; Plant Proteins/pharmacology; Plant Proteins/chemistry
  4. Ng SK, Nyam KL, Nehdi IA, Chong GH, Lai OM, Tan CP
    Food Sci Biotechnol, 2016;25(Suppl 1):15-21.
    PMID: 30263481 DOI: 10.1007/s10068-016-0093-8
    β-Lactoglobulin (β-lg) can produce fibrils that have multi-functional properties. Impacts of different stirring speeds on characteristics of β-lg fibrils as a stable form in β-lg fibril solutions were investigated. Fibril concentration, fibril morphology, turbidity, particle size distribution, zeta potential, and rheological behavior of solutions were studied. Stirring enhanced fibril formation and stability of a fibril solution, in comparison with unstirred solutions. Increasing the stirring speed produced more turbidity and a greater distribution of particle sizes, higher viscosity values, but no differences in zeta potential values of β-lg fibril solutions. However, a high stirring speed is not feasible due to reduction of the fibril yield and changes in fibril morphology.
    Matched MeSH terms: Whey Proteins
  5. Razak SAA, Murad NAA, Masra F, Chong DLS, Abdullah N, Jalil N, et al.
    Curr Mol Med, 2018;18(5):295-305.
    PMID: 30289070 DOI: 10.2174/1566524018666181004121604
    BACKGROUND: The phenotypic severity of β-thalassemia is highly modulated by three genetic modifiers: β-globin (HBB) mutations, co-inheritance of α-thalassemia and polymorphisms in the genes associated with fetal haemoglobin (HbF) production. This study was aimed to evaluate the effect of HbF related polymorphisms mainly in the HBB cluster, BCL11A (B-cell CLL/lymphoma 11A) and HBS1L-MYB (HBS1-like translational GTPase-MYB protooncogene, transcription factor) with regards to clinical severity.

    METHODS: A total of 149 patients were included in the study. HBA and HBB mutations were characterised using multiplex PCR, Sanger sequencing and multiplex ligationdependent probe amplification. In addition, 35 HbF polymorphisms were genotyped using mass spectrometry and PCR-restriction fragment length polymorphism (PCRRFLP). The genotype-phenotype association was analysed using SPSS version 22.

    RESULTS: Twenty-one HBB mutations were identified in the study population. Patients with HBB mutations had heterogeneous phenotypic severity due to the presence of other secondary modifiers. Co-inheritance of α-thalassemia (n = 12) alleviated disease severity of β-thalassemia. In addition, three polymorphisms (HBS1LMYB, rs4895441 [P = 0.008, odds ratio (OR) = 0.38 (0.18, 0.78)], rs9376092 [P = 0.030, OR = 0.36 (0.14, 0.90)]; and olfactory receptor [OR51B2] rs6578605 [P = 0.018, OR = 0.52 (0.31, 0.89)]) were associated with phenotypic severity. Secondary analysis of the association between single-nucleotide polymorphisms with HbF levels revealed three nominally significant SNPs: rs6934903, rs9376095 and rs9494149 in HBS1L-MYB.

    CONCLUSION: This study revealed 3 types of HbF polymorphisms that play an important role in ameliorating disease severity of β-thalassemia patients which may be useful as a predictive marker in clinical management.

    Matched MeSH terms: GTP-Binding Proteins/genetics*; Proto-Oncogene Proteins c-myb/genetics*
  6. Ling JG, Mansor MH, Abdul Murad AM, Mohd Khalid R, Quay DHX, Winkler M, et al.
    J Biotechnol, 2020 Jan 10;307:55-62.
    PMID: 31545972 DOI: 10.1016/j.jbiotec.2019.09.008
    Carboxylic acid reductases (CARs) are attracting burgeoning attention as biocatalysts for organic synthesis of aldehydes and their follow-up products from economic carboxylic acid precursors. The CAR enzyme class as a whole, however, is still poorly understood. To date, relatively few CAR sequences have been reported, especially from fungal sources. Here, we sought to increase the diversity of the CAR enzyme class. Six new CAR sequences from the white-rot fungus Pycnoporus cinnabarinus were identified from genome-wide mining. Genome and gene clustering analysis suggests that these PcCAR enzymes play different natural roles in Basidiomycete systems, compared to their type II Ascomycete counterparts. The cDNA sequences of all six Pccar genes were deduced and analysis of their corresponding amino acid sequence showed that they encode for proteins of similar properties that possess a conserved modular functional tri-domain arrangement. Phylogenetic analyses showed that all PcCAR enzymes cluster together with the other type IV CARs. One candidate, PcCAR4, was cloned and over-expressed recombinantly in Escherichia coli. Subsequent biotransformation-based screening with a panel of structurally-diverse carboxylic acid substrates suggest that PcCAR4 possessed a more pronounced substrate specificity compared to previously reported CARs, preferring to reduce sterically-rigid carboxylic acids such as benzoic acid. These findings thus present a new functionally-distinct member of the CAR enzyme class.
    Matched MeSH terms: Fungal Proteins/classification; Fungal Proteins/genetics; Fungal Proteins/metabolism
  7. Nanthini J, Chia KH, Thottathil GP, Taylor TD, Kondo S, Najimudin N, et al.
    J Biotechnol, 2015 Nov 20;214:47-8.
    PMID: 26376470 DOI: 10.1016/j.jbiotec.2015.09.007
    Streptomyces sp. strain CFMR 7, which naturally degrades rubber, was isolated from a rubber plantation. Whole genome sequencing and assembly resulted in 2 contigs with total genome size of 8.248 Mb. Two latex clearing protein (lcp) genes which are responsible for rubber degrading activities were identified.
    Matched MeSH terms: Bacterial Proteins
  8. Amjad N, Osman HA, Razak NA, Kassian J, Din J, bin Abdullah N
    World J Gastroenterol, 2010 Sep 21;16(35):4443-7.
    PMID: 20845512
    AIM: To study the presence of Helicobacter pylori (H. pylori) virulence factors and clinical outcome in H. pylori infected patients.

    METHODS: A prospective analysis of ninety nine H. pylori-positive patients who underwent endoscopy in our Endoscopy suite were included in this study. DNA was isolated from antral biopsy samples and the presence of cagA, iceA, and iceA2 genotypes were determined by polymerase chain reaction and a reverse hybridization technique. Screening for H. pylori infection was performed in all patients using the rapid urease test (CLO-Test).

    RESULTS: From a total of 326 patients who underwent endoscopy for upper gastrointestinal symptoms, 99 patients were determined to be H. pylori-positive. Peptic ulceration was seen in 33 patients (33%). The main virulence strain observed in this cohort was the cagA gene isolated in 43 patients. cagA was associated with peptic ulcer pathology in 39.5% (17/43) and in 28% (16/56) of non-ulcer patients. IceA1 was present in 29 patients (29%) and iceA2 in 15 patients (15%). Ulcer pathology was seen in 39% (11/29) of patients with iceA1, while 31% (22/70) had normal findings. The corresponding values for iceA2 were 33% (5/15) and 33% (28/84), respectively.

    CONCLUSION: Virulence factors were not common in our cohort. The incidence of factors cagA, iceA1 and iceA2 were very low although variations were noted in different ethnic groups.

    Matched MeSH terms: Bacterial Outer Membrane Proteins/genetics*; Bacterial Proteins/genetics*
  9. Low JSY, Chew LL, Ng CC, Goh HC, Lehette P, Chong VC
    J Therm Biol, 2018 May;74:14-22.
    PMID: 29801619 DOI: 10.1016/j.jtherbio.2018.02.012
    Heat shock response (HSR), in terms of transcription regulation of two heat shock proteins genes hsp70 and hsp90), was analysed in a widespread tropical copepod Pseudodiaptomus annandalei. The mRNA transcripts of both genes were quantified after copepods at a salinity of 20 underwent an acclimation process involving an initial acclimation temperature of 29 °C, followed by gradual thermal ramping to the target exposure temperature range of 24-36 °C. The respective cellular HSR and organismal metabolism, measured by respiratory activity at exposure temperatures, were compared. The fold change in mRNA expression for both hsp70 and hsp90 (8-9 fold) peaks at 32 °C, which is very close to 32.4 °C, the upper thermal optimum for respiration in the species. Unexpectedly, the modelled HSR curves peak at only 3 °C (hsp90) and 3.5 °C (hsp70) above the mean water temperature (29.32 °C) of the copepod in the field. We propose that copepods in tropical waters adopt a preparative HSR strategy, early at the upper limit of its thermal optimum, due to the narrow thermal range of its habitat thus precluding substantial energy demand at higher temperatures. However, the model suggests that the species could survive to at least 36 °C with short acclimation time. Nevertheless, the significant overlap between its thermal range of hsp synthesis and the narrow temperature range of its habitat also suggests that any unprecedented rise in sea temperature would have a detrimental effect on the species.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/metabolism; HSP90 Heat-Shock Proteins/metabolism
  10. Yang J, Cánovas-Márquez JT, Li P, Li S, Niu J, Wang X, et al.
    J Agric Food Chem, 2021 Aug 25;69(33):9632-9641.
    PMID: 34428900 DOI: 10.1021/acs.jafc.1c03307
    Malate as an important intermediate metabolite, its subcellular location, and concentration have a significant impact on fungal lipid metabolism. Previous studies showed that the mitochondrial malate transporter plays an important role in lipid accumulation in Mucor circinelloides by manipulating intracellular malate concentration. However, the role of plasma membrane malate transporters in oleaginous fungi remains unexplored. Therefore, in this work, two plasma membrane malate transporters "2-oxoglutarate:malate antiporters" (named SoDIT-a and SoDIT-b) of M. circinelloides WJ11 were deleted, and the consequences in growth capacity, lipid accumulation, and metabolism were analyzed. The results showed that deletion of sodit-a or/and sodit-b reduced the extracellular malate, confirming that the products of both genes participate in malate transportation. In parallel, the lipid contents in mutants increased approximately 10-40% higher than that in the control strain, suggesting that the defect in plasma membrane malate transport results in an increase of malate available for lipid biosynthesis. Furthermore, transcriptional analysis showed that the expression levels of multiple key genes involved in the lipid biosynthesis were also increased in the knockout mutants. To the best of our knowledge, this is the first report that demonstrated the association between plasma membrane malate transporters and lipid accumulation in M. circinelloides.
    Matched MeSH terms: Membrane Transport Proteins
  11. Abu ML, Mohammad R, Oslan SN, Salleh AB
    Prep Biochem Biotechnol, 2021;51(4):350-360.
    PMID: 32940138 DOI: 10.1080/10826068.2020.1818256
    A thermostable bacterial lipase from Geobacillus zalihae was expressed in a novel yeast Pichia sp. strain SO. The preliminary expression was too low and discourages industrial production. This study sought to investigate the optimum conditions for T1 lipase production in Pichia sp. strain SO. Seven medium conditions were investigated and optimized using Response Surface Methodology (RSM). Five responding conditions namely; temperature, inoculum size, incubation time, culture volume and agitation speed observed through Plackett-Burman Design (PBD) method had a significant effect on T1 lipase production. The medium conditions were optimized using Box-Behnken Design (BBD). Investigations reveal that the optimum conditions for T1 lipase production and Biomass concentration (OD600) were; Temperature 31.76 °C, incubation time 39.33 h, culture volume 132.19 mL, inoculum size 3.64%, and agitation speed of 288.2 rpm with a 95% PI low as; 12.41 U/mL and 95% PI high of 13.65 U/mL with an OD600 of; 95% PI low as; 19.62 and 95% PI high as; 22.62 as generated by the software was also validated. These predicted parameters were investigated experimentally and the experimental result for lipase activity observed was 13.72 U/mL with an OD600 of 24.5. At these optimum conditions, there was a 3-fold increase on T1 lipase activity. This study is the first to develop a statistical model for T1 lipase production and biomass concentration in Pichia sp. Strain SO. The optimized production of T1 lipase presents a choice for its industrial application.
    Matched MeSH terms: Bacterial Proteins/biosynthesis*; Recombinant Proteins/biosynthesis*
  12. Ojukwu M, Ofoedu C, Seow EK, Easa AM
    J Sci Food Agric, 2021 Jul;101(9):3732-3741.
    PMID: 33301191 DOI: 10.1002/jsfa.11004
    BACKGROUND: Rice flour does not contain gluten and lacks cohesion and extensibility, which is responsible for the poor texture of rice noodles. Different technologies have been used to mitigate this challenge, including hydrothermal treatments of rice flour, direct addition of protein in noodles, use of additives such as hydrocolloids and alginates, and microbial transglutaminase (MTG). Recently, the inclusion of soy protein isolate (SPI), MTG, and glucono-δ-lactone (GDL) in the rice noodles system yielded rice noodles with improved texture and more compact microstructure, hence the need to optimize the addition of SPI, MTG, and GDL to make quality rice noodles.

    RESULTS: Numerical optimization showed that rice noodles prepared with SPI, 68.32 (g kg-1 of rice flour), MTG, 5.06 (g kg-1 of rice flour) and GDL, 5.0 (g kg-1 of rice flour) gave the best response variables; hardness (53.19 N), springiness (0.76), chewiness (20.28 J), tensile strength (60.35 kPa), and cooking time (5.15 min). The pH, sensory, and microstructure results showed that the optimized rice noodles had a more compact microstructure with fewer hollows, optimum pH for MTG action, and overall sensory panelists also showed the highest preference for the optimized formulation, compared to other samples selected from the numerical optimization and desirability tests.

    CONCLUSION: Optimization of the levels of SPI, MTG, and GDL yielded quality noodles with improved textural, mechanical, sensory, and microstructural properties. This was partly due to the favourable pH value of the optimized noodles that provided the most suitable conditions for MTG crosslinking and balanced electrostatic interaction of proteins. © 2020 Society of Chemical Industry.

    Matched MeSH terms: Bacterial Proteins/analysis*; Soybean Proteins/analysis*
  13. Liang S, Singh M, Gam LH
    Dis Markers, 2010;28(3):149-65.
    PMID: 20534901 DOI: 10.3233/DMA-2010-0694
    Female breast cancer is one of the leading causes of female mortality worldwide. In Malaysia, breast cancer is the most commonly diagnosed cancer in women. Of the women in Malaysia, the Chinese have the highest number of breast cancer cases, followed by the Indian and the Malay. The most common type of breast cancer is infiltrating ductal carcinoma (IDC). A proteomic approach was applied in this study to identify changes in the protein profile of cancerous tissues compared with normal tissues from 18 patients; 8 Chinese, 6 Malay and 4 Indian were analysed. Twenty-four differentially expressed hydrophilic proteins were identified. We evaluated the potential of these proteins as biomarkers for infiltrating ductal carcinoma based on their ethnic-specific expressions. Three of the upregulated proteins, calreticulin, 14-3-3 protein zeta and 14-3-3 protein eta, were found to be expressed at a significantly higher level in the cancerous breast tissues when compared with the normal tissues in cases of infiltrating ductal carcinoma. The upregulation in expression was particularly dominant in the Malay cohort.
    Matched MeSH terms: Neoplasm Proteins/metabolism*; Proteins/metabolism*
  14. Parveez GK, Masri MM, Zainal A, Majid NA, Yunus AM, Fadilah HH, et al.
    Biochem Soc Trans, 2000 Dec;28(6):969-72.
    PMID: 11171275
    Oil palm is an important economic crop for Malaysia. Genetic engineering could be applied to produce transgenic oil palms with high value-added fatty acids and novel products to ensure the sustainability of the palm oil industry. Establishment of a reliable transformation and regeneration system is essential for genetic engineering. Biolistic was initially chosen as the method for oil palm transformation as it has been the most successful method for monocotyledons to date. Optimization of physical and biological parameters, including testing of promoters and selective agents, was carried out as a prerequisite for stable transformation. This has resulted in the successful transfer of reporter genes into oil palm and the regeneration of transgenic oil palm, thus making it possible to improve the oil palm through genetic engineering. Besides application of the Biolistics method, studies on transformation mediated by Agrobacterium and utilization of the green fluorescent protein gene as a selectable marker gene have been initiated. Upon the development of a reliable transformation system, a number of useful targets are being projected for oil palm improvement. Among these targets are high-oleate and high-stearate oils, and the production of industrial feedstock such as biodegradable plastics. The efforts in oil palm genetic engineering are thus not targeted as commodity palm oil. Due to the long life cycle of the palm and the time taken to regenerate plants in tissue culture, it is envisaged that commercial planting of transgenic palms will not occur any earlier than the year 2020.
    Matched MeSH terms: Luminescent Proteins/analysis; Luminescent Proteins/genetics; Green Fluorescent Proteins
  15. Ankasha SJ, Shafiee MN, Abdul Wahab N, Raja Ali RA, Mokhtar NM
    PMID: 34071861 DOI: 10.3390/ijerph18115741
    High-grade serous ovarian cancer (HGSC) is the most common ovarian cancer with highly metastatic properties. A small non-coding RNA, microRNA (miRNA) was discovered to be a major regulator in many types of cancers through binding at the 3'-untranslated region (3'UTR), leading to degradation of the mRNA. In this study, we sought to investigate the underlying mechanisms involved in the dysregulation of miR-200c-3p in HGSC progression and metastasis. We identified the upregulation of miR-200c-3p expression in different stages of HGSC clinical samples and the downregulation of the tumor suppressor gene, Deleted in Liver Cancer 1 (DLC1), expression. Over expression of miR-200c-3p in HGSC cell lines downregulated DLC1 but upregulated the epithelial marker, E-cadherin (CDH1). Based on in silico analysis, two putative binding sites were found within the 3'UTR of DLC1, and we confirmed the direct binding of miR-200c-3p to the target binding motif at position 1488-1495 bp of 3'UTR of DLC1 by luciferase reporter assay in a SKOV3 cell line co-transfected with vectors and miR-200c-3p mimic. These data showed that miR-200c-3p regulated the progression of HGSC by regulating DLC1 expression post-transcription and can be considered as a promising target for therapeutic purposes.
    Matched MeSH terms: GTPase-Activating Proteins/genetics; Tumor Suppressor Proteins/genetics
  16. Jia TZ, Bapat NV, Verma A, Mamajanov I, Cleaves HJ, Chandru K
    Biomacromolecules, 2021 04 12;22(4):1484-1493.
    PMID: 33663210 DOI: 10.1021/acs.biomac.0c01697
    Nucleic acid segregation and compartmentalization were likely essential functions that primitive compartment systems resolved during evolution. Recently, polyester microdroplets generated from dehydration synthesis of various α-hydroxy acids (αHA) were suggested as potential primitive compartments. Some of these droplets can differentially segregate and compartmentalize organic dyes, proteins, and nucleic acids. However, the previously studied polyester microdroplets included limited αHA chemical diversity, which may not reflect the chemical diversity available in the primitive Earth environment. Here, we increased the chemical diversity of polyester microdroplet systems by combinatorially adding an αHA monomer with a basic side chain, 4-amino-2-hydroxybutyric acid (4a2h), which was incorporated with different ratios of other αHAs containing uncharged side chains to form combinatorial heteropolyesters via dehydration synthesis. Incorporation of 4a2h in the polymers resulted in the assembly of some polyester microdroplets able to segregate fluorescent RNA or potentially acquire intrinsic fluorescent character, suggesting that minor modifications of polyester composition can significantly impact the functional properties of primitive compartments. This study suggests one process by which primitive chemical systems can increase diversity of compartment "phenotype" through simple modifications in their chemical composition.
    Matched MeSH terms: Proteins
  17. Lim BN, Chin CF, Choong YS, Ismail A, Lim TS
    Toxicon, 2016 Jul;117:94-101.
    PMID: 27090555 DOI: 10.1016/j.toxicon.2016.04.032
    Antibody phage display is a useful tool for the isolation and identification of monoclonal antibodies. Naive antibody libraries are able to overcome the limitations associated with the traditional hybridoma method for monoclonal antibody generation. Antibody phage display is also a preferred method for antibody generation against toxins as it does not suffer from toxicity mediated complications. Here, we describe a naïve multi ethnic scFv antibody library generated via two-step cloning with an estimated diversity of 2 × 10(9). The antibody library was used to screen for monoclonal antibodies against Hemolysin E antigen, a pore forming toxin produced by Salmonella enterica serovar Typhi. A soluble monoclonal scFv antibody against the HlyE toxin (IgM scFv D7 anti-hlyE) was isolated from the library. This shows the value of the naïve library to generate antibodies against toxin targets in addition to the potential use of the library to isolate antibodies against other immunogenic targets.
    Matched MeSH terms: Hemolysin Proteins/immunology*; Escherichia coli Proteins/immunology*
  18. Shori AB, Ming KS, Baba AS
    Biotechnol Appl Biochem, 2021 Apr;68(2):221-229.
    PMID: 32249982 DOI: 10.1002/bab.1914
    Plain and Lycium barbarum yogurt were made in the presence and absence of fish collagen. Yogurt samples were analyzed for acidification, milk protein proteolysis, angiotensin I-converting enzyme (ACE) inhibitory activity, and sensory evaluation during refrigerated storage for up to 21 days. The o-phthaldialdehyde peptides amount of L. barbarum yogurt both in the presence and absence of fish collagen were significantly increased during 14 days of storage. SDS-PAGE showed improvement in whey proteins degradation of L. barbarum yogurt with/without fish collagen after 3 weeks of storage. L. barbarum yogurt in absence of fish collagen was acting as a great ACE inhibitor reached up to 85% on day 7 of storage. The incorporation of L. barbarum and/or fish collagen affected to a small extent the overall sensory characteristics of yogurt. Yogurt supplemented with L. barbarum and/or fish collagen may lead to the improvement in the production and formulation of yogurt differing in their anti-ACE activity.
    Matched MeSH terms: Milk Proteins/chemistry*; Fish Proteins/chemistry*
  19. Rosmilah M, Shahnaz M, Masita A, Noormalin A, Jamaludin M
    Trop Biomed, 2005 Dec;22(2):171-7.
    PMID: 16883284 MyJurnal
    Fish has been recognized as a source of potent allergens both in food and occupational allergy. Lutjanus argentimaculatus (red snapper) and Lutjanus johnii (golden snapper) locally known as merah and jenahak, respectively, are among the most commonly consumed fish in Malaysia. The objective of this study is to identify the IgE-binding proteins and major allergens of these species of fishes. Extracts of both fish species were prepared and fractionated by sodium dodecyl polyacrylamide gel electrophoresis (SDS-PAGE). IgE binding patterns were then demonstrated by immunoblotting using sera from patients allergic to the fishes. The raw extracts of both fish produced 26 protein bands. Both species of fishes had similar protein profiles. In cooked extracts, several protein bands in the range of about 40 to 90 kD which were present in the uncooked extracts appeared to be denatured and formed high molecular weight complexes. The immunoblotting of golden snapper and red snapper revealed 16 and 15 various IgE-binding bands, in the range of 151 to 12-11 kD, respectively. A 51 kD protein was identified as a major allergen for both fishes. A 46 kD protein was also demonstrated as a major allergen in golden snapper and a 42 kD protein was also seen as a major allergen in red snapper. A heat-resistant protein of ~12 kD which is equivalent in size with fish parvalbumin was demonstrated only as minor allergen for both fishes.
    Matched MeSH terms: Proteins/adverse effects; Proteins/immunology; Proteins/chemistry*
  20. Haliza Abdul Mutalib, Saleha Abdul Majid, Mohamed Kamel bin Abdul Ghani, Anisah Nordin, Yusof Suboh, Norhayati Moktar
    MyJurnal
    Tujuan kajian ini adalah untuk mengenal pasti punca insidens tinggi infeksi Acanthamoeba di kalangan pemakai kanta sentuh di Kuala Lumpur. Satu ratus tujuh puluh empat sampel diambil dari 66 subjek pemakai kanta sentuh lembut jenis pakaibuang dan mereka juga disoal dengan menggunakan borang kaji selidik. Kesemua pemakai kanta sentuh menggunakan pelbagai jenis larutan disinfeksi atau larutan pelbagai guna untuk membersih dan mendisinfeksi kanta sentuh. Swab diambil dari kanta sentuh yang masih dipakai, bekas kanta sentuh dan juga larutan disinfeksi yang sedang digunakan. Daripada swab ini proses pengkulturan yang lengkap dilakukan untuk pemencilan Acanthamoeba spp. Pemencilan Acanthamoeba spp. daripada 14 sampel daripada 7 subjek telah berjaya dilakukan. Hasil pemencilan yang tinggi adalah daripada bekas kanta sentuh (13.5%) dan kanta sentuh subjek (10.6%). Walau bagaimanapun tiada sebarang pemencilan didapati daripada larutan disinfeksi. Punca infeksi Acanthamoeba adalah dari bekas simpanan kanta sentuh dan kanta sentuh yang dipakai. Kaji selidik menunjukkan peratusan tidak komplain yang tinggi di kalangan pemakai kanta sentuh kerana ramai menggunakan air paip untuk mencuci kanta sentuh dan bekasnya.
    Matched MeSH terms: Adaptor Proteins, Signal Transducing
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links