Methods: Seeds of T. ammi were extracted using three different solvents n-hexane, chloroform, and methanol by using soxhlet apparatus. To assess the immunomodulatory effect, delayed-type hypersensitivity (DTH) assay method was used and by the DTH assay, the effect of T. ammi on the skin thickness of rats was estimated. To find the exact dose for administration, acute toxicity test was performed using crude methanolic extract at a dose of 400, 800, 1600, and 3200mg/kg. After acute toxicity test, 500mg/kg dose was determined as safe for therapeutic effect and immunomodulatory effect was evaluated at this dose. Dose of 500mg/kg was administered to Wistar rats daily for 14 days and skin thickness of rats was measured at 24, 48, and 72h.
Results: Results were obtained from six groups of rats, which were positive control group, negative control group, and the groups receiving the test drugs. Standard drug was the combination of sodium selenite, vitamin E, and sodium chloride and it showed more positive results as compared to that of test drug. Furthermore, among the three extracts, methanol extract showed more effectiveness on skin thickness.
Conclusion: There was a meaningful difference was observed between the skin thickness of rats which shows that T. ammi have good immunomodulatory as well as immunostimulant activity.
AIMS OF STUDY: The aim of the present study is to evaluate the repeated dose toxicity of the standardized aqueous extract administered daily for 30 days through oral administration at its effective hypoglycemia doses.
MATERIALS AND METHODS: The seeds were dried, ground and extracted in deionized water. A HPLC-photodiode array method was developed and validated for the standardization of both the hypoglycemia agents, namely bruceine D and E in aqueous extract. Both normoglycemia and streptozotocin (STZ)-induced diabetic rats were fed orally with 15, 30 and 60mg/kg body weight of standardized aqueous extract. The blood glucose was measured at 0-8h. In repeated dose toxicity, similar doses were administered orally to rats for 30 days. At the end of 30 days, the blood was withdrawn and subjected to biochemical and haematology analysis while organs were harvested for histology analysis.
RESULTS: Oral administration of standardized aqueous extract exhibited a dose-response relationship in both the normoglycemia and STZ-induced diabetic rats. Daily oral administration of 15, 30 and 60mg/kg standardized aqueous extract for 30 days to rats did not show signs to toxicity in its biochemical, haematology and histology analysis.
CONCLUSION: In conclusion, although the seeds were reported to contain compounds with various pharmacological activity, the daily oral administration to rats for 30 days do not showed signs of toxicity at its effective hypoglycemia doses.
METHODS: This systematic review was conducted by performing searches for relevant publications on two databases (PubMed and Scopus). The publication period was limited from January 2011 to December 2021. Cochrane collaboration tools were used for the risk of bias assessment of each trial.
RESULT: Six out of 8 randomised controlled trials (n:776) demonstrated a significant improvement in lipid profile (p <0.05), 5 out of 7 trials (n:701) showed a significant reduction in glycaemic indices (p <0.05), 1 out of 5 trials (n:551) demonstrated significant improvements in blood pressure (p <0.05), and 2 out of 7 trials (n:705) showed a significant reduction in anthropometric measurements (p <0.05).
CONCLUSION: Nigella Sativa has proved to have a significant positive effect on lipid profile and glycaemic index. The results showed in the parameters of blood pressure and anthropometric indices are less convincing, as results were inconsistent across studies. Nigella Sativa can therefore be recommended as an adjunct therapy for metabolic syndrome.
AIMS OF THE STUDY: This study aims to investigate the ability of T. diffusa to ameliorate the impairment in testicular steroidogenesis and spermatogenesis in DM that might help to improve testicular function, and subsequently restore male fertility.
MATERIALS AND METHODS: DM-induced adult male rats were given 100 mg/kg/day and 200 mg/kg/day T. diffusa leaf extract orally for 28 consecutive days. Rats were then sacrificed; sperm and testes were harvested and sperm parameter analysis were performed. Histo-morphological changes in the testes were observed. Biochemical assays were performed to measure testosterone and testicular oxidative stress levels. Immunohistochemistry and double immunofluorescence were used to monitor oxidative stress and inflammation levels in testes as well as Sertoli and steroidogenic marker proteins' expression.
RESULTS: Treatment with T. diffusa restores sperm count, motility, and viability near normal and reduces sperm morphological abnormalities and sperm DNA fragmentation in diabetic rats. T. diffusa treatment also reduces testicular NOX-2 and lipid peroxidation levels, increases testicular antioxidant enzymes (SOD, CAT, and GPx) activities, ameliorates testicular inflammation via downregulating NF-ΚB, p-Ikkβ and TNF-α and upregulating IκBα expression. In diabetic rats, T. diffusa treatment increases testicular steroidogenic proteins (StAR, CYP11A1, SHBG, and ARA54, 3 and 17β-HSD) and plasma testosterone levels. Furthermore, in diabetic rats treated with T. diffusa, Sertoli cell marker proteins including Connexin 43, N-cadherin, and occludin levels in the testes were elevated.
CONCLUSION: T. diffusa treatment could help to ameliorate the detrimental effects of DM on the testes, thus this plant has potential to be used to restore male fertility.
Methodology: Thirty rats were treated to receive 0.5 mL phosphate-buffered saline (group A, control), 0.5 mL corn oil (group B), 0.2% CPZ (group C), for 6 weeks, 0.2% CPZ for 3 weeks and then 200 mg/kg of Kv for 3 weeks (group D), or 200 mg/kg of Kv for 3 weeks followed by 0.2% CPZ for 3 weeks (group E). Rats were assessed for exploratory functions and anxiety-like behaviour before being euthanised and perfused transcardially with 4% paraformaldehyde. Prefrontal and hippocampal thin sections were stained in hematoxylin and eosin and cresyl fast violet stains.
Results: CPZ-induced demyelination resulted in behavioural impairment as seen by reduced exploratory activities, rearing behaviour, stretch attend posture, center square entry, and anxiogenic characteristics. Degenerative changes including pyknosis, karyorrhexis, neuronal hypertrophy, and reduced Nissl integrity were also seen. Animals treated with Kv showed significant improvement in behavioural outcomes and a comparatively normal cytoarchitectural profile.
Conclusion: Kv provides protective roles against CPZ-induced neurotoxicity through prevention of ribosomal protein degradation.