PATIENTS AND METHODS: We report two siblings of a healthy but consanguineous Malaysian family presenting with severe short stature caused by CPHD with a variable phenotype. Importantly, at the beginning the girl presented with isolated GHD, whereas the boy was hypothyroid. As the most common gene alterations responsible for CPHD are within either the PROP-1- or the POU1F1- (PIT-1)-gene these two genes were further studied.
RESULTS: Subsequent sequencing of the six exons of the POU1F1-gene allowed the identification of a new N-terminal mutation (Q4ter) in these two children. A substitution of C to T induced a change from a glutamine (CAA) to a stop codon (TAA) in exon 1 of the PIT-1 protein. Both affected children were homozygous for the mutation, whereas the mother and father were heterozygous.
CONCLUSION: We describe two children with autosomal recessive inherited CPHD caused by a new N-terminal located mutation within the PUO1F1-gene. The clinical history of these two children underline the phenotypic variability and support the fact that children with any isolated and/or combined PHD need to be closely followed as at an any time other hormonal deficiencies may occur. In addition, molecular analysis of the possible genes involved might be most helpful for the future follow-up.
METHODS: We developed a decision analytic model to estimate the lifetime costs and quality-adjusted life-years (QALYs) accrued through BRCA mutation testing or routine clinical surveillance (RCS) for a hypothetical cohort of 1000 early-stage breast cancer patients aged 40 years. In the model, patients would decide whether to accept testing and to undertake risk-reducing mastectomy, oophorectomy, tamoxifen, combinations or neither. We calculated the incremental cost-effectiveness ratio (ICER) from the health system perspective. A series of sensitivity analyses were performed.
RESULTS: In the base case, testing generated 11.2 QALYs over the lifetime and cost US$4815 per patient whereas RCS generated 11.1 QALYs and cost US$4574 per patient. The ICER of US$2725/QALY was below the cost-effective thresholds. The ICER was sensitive to the discounting of cost, cost of BRCA mutation testing and utility of being risk-free, but the ICERs remained below the thresholds. Probabilistic sensitivity analysis showed that at a threshold of US$9500/QALY, 99.9% of simulations favoured BRCA mutation testing over RCS.
CONCLUSIONS: Offering BRCA mutation testing to early-stage breast cancer patients identified using a locally-validated risk-assessment tool may be cost effective compared to RCS in Malaysia.