METHODS: A total of 332 patients who were mandated to undergo drug rehabilitation participated in this cross-sectional study. The study data were collected through face-to-face interviews using a semi-structured questionnaire.
RESULTS: The majority were males (95%, n = 314/332) and Malays (98%, n = 325/332) with a mean age of 32.3 years (SD = 9.16). Over two thirds of the respondents used kratom to alleviate heroin withdrawal symptoms and to reduce methamphetamine intake; 59% used it as a substitute for heroin and methamphetamine. A similar proportion used kratom to reduce heroin intake (58%), while only 15% used it for its euphoric effects. Multivariate analysis showed that previous attendees of government rehabilitation programs had lower odds of using kratom as a heroin substitute.
CONCLUSIONS: The potential of kratom to alleviate heroin withdrawal symptoms, and to reduce methamphetamine and heroin intake, among people who co-use heroin and methamphetamine warrants further research.
AIM OF THE STUDY: To investigate the anti-hyperglycemic potential of AE through in-vitro enzymatic activities and streptozotocin-nicotinamide (STZ-NA) induced diabetic rat models using proton-nuclear magnetic resonance (1H-NMR)-based metabolomics approach.
MATERIALS AND METHODS: Anti-α-amylase and anti-α-glucosidase activities of the hydroethanolic extracts of AE were evaluated. The absolute quantification of bioactive constituents, using ultra-high performance liquid chromatography (UHPLC) was performed for the most active extract. Three different dosage levels of the AE extract were orally administered for 4 weeks consecutively in STZ-NA induced diabetic rats. Physical assessments, biochemical analysis, and an untargeted 1H-NMR-based metabolomics analysis of the urine and serum were carried out on the animal model.
RESULTS: Type 2 diabetes mellitus (T2DM) rat model was successfully developed based on the clear separation observed between the STZ-NA induced diabetic and normal non-diabetic groups. Discriminating biomarkers included glucose, citrate, succinate, allantoin, hippurate, 2-oxoglutarate, and 3-hydroxybutyrate, as determined through an orthogonal partial least squares-discriminant analysis (OPLS-DA) model. A treatment dosage of 250 mg/kg body weight (BW) of standardized 70% ethanolic AE extract mitigated increase in serum glucose, creatinine, and urea levels, providing treatment levels comparable to that obtained using metformin, with flavonoids primarily contribute to the anti-hyperglycemic activities. Urinary metabolomics disclosed that the following disturbed metabolism pathways: the citrate cycle (TCA cycle), butanoate metabolism, glycolysis and gluconeogenesis, pyruvate metabolism, and synthesis and degradation of ketone bodies, were ameliorated after treatment with the standardized AE extract.
CONCLUSIONS: This study demonstrated the first attempt at revealing the therapeutic effect of oral treatment with 250 mg/kg BW of standardized AE extract on chemically induced T2DM rats. The present study provides scientific evidence supporting the ethnomedicinal use of Ardisia elliptica and further advances the understanding of the fundamental molecular mechanisms affected by this herbal antidote.
METHODS: The cytotoxic effect of 6-shogaol was determined by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The neuritogenic activity was assessed by neurite outgrowth stimulation assay while the concentration of extracellular NGF in cell culture supernatant was assessed by enzyme-linked immunosorbent assay (ELISA). Involvement of cellular signaling pathways, mitogen-activated protein kinase kinase/extracellular signal-regulated kinase1/2 (MEK/ERK1/2) and phosphoinositide-3-kinase/protein kinase B (PI3K/AKT) in 6-shogaol-stimulated neuritogenesis were examined by using specific pharmacological inhibitors.
RESULTS: 6-Shogaol (500 ng/ml) induced neuritogenesis that was comparable to NGF (50 ng/ml) and was not cytotoxic towards PC-12 cells. 6-Shogaol induced low level of NGF biosynthesis in PC-12 cells, showing that 6-shogaol stimulated neuritogenesis possibly by inducing NGF biosynthesis, and also acting as a substitute for NGF (NGF mimic) in PC-12 cells. The inhibitors of Trk receptor (K252a), MEK/ERK1/2 (U0126 and PD98059) and PI3K/AKT (LY294002) attenuated the neuritogenic activity of both NGF and 6-shogaol, respectively.
CONCLUSIONS: The present findings demonstrated that 6-shogaol induced neuritogenic activity in PC-12 cells via the activation MEK/ERK1/2 and PI3K/AKT signaling pathways. This study suggests that 6-shogaol could act as an NGF mimic, which may be beneficial for preventive and therapeutic uses in neurodegenerative diseases.
OBJECTIVE: In this paper, we review the health beneficial effects of polyphenols and phlorotannins from brown seaweeds with special emphasis on their inhibitory effects on carbohydrate-metabolizing enzymes.
METHODS: A survey of literature from databases such as Sciencedirect, Scopus, Pubmed, Springerlink, and Google Scholar from the year 1973 to 2013 was done to bring together the information relating to drug discovery from brown seaweeds as a source for diabetes treatment.
RESULTS: Over the past two decades, 20 different bioactive polyphenols/phlorotannins have been isolated and studied from 10 different brown algae. Discussion of the positive effect on the inhibition of enzymes metabolizing carbohydrates in both in vitro and in vivo experiments are included.
CONCLUSION: Despite the recent advancements in isolating bioactive compounds from seaweeds with potential health benefit or pharmaceutical behavior, studies on the polyphenol effectiveness on glucose homeostasis in human beings are very few in response to their functional characterization. Added research in this area is required to confirm the close connection of polyphenol rich seaweed-based diet consumption with glucose homeostasis and the exciting possibility of prescribing polyphenols to treat the diabetes pandemic.
MATERIALS AND METHODS: Antinociceptive activity of ethanol pomegranate extract was examined using three models of pain: the writhing test, the hot tail flick test and the plantar test. The ethanolic extract of pomegranate was administered by oral gavages in doses of (100,150 and 200mg/kg, p.o (orally)), for all the tests and compared with aspirin (100mg/kg, p.o.) which was considered as the standard drug. Phytochemical screening and HPLC analysis of the plant species was carried out.
RESULTS: In the writhing test, the index of pain inhibition (IPI) was 37% for ethanolic extract of pomegranate (200mg/kg, p.o.), and 59% for aspirin. In the hot tail flick test, the ethanolic extract of pomegranate (200mg/kg, p.o.), has shown significant analgesia reaching its peak at 60 min maximum possible analgesia (MPA), was 24.1% as compared with aspirin 37.5%. Hyperalgesia was successfully induced by the plantar test and the ethanol extract of pomegranate (100,150,200mg/kg, p.o.), reduced the hyperalgesia in a dose dependent manner comparable to aspirin at (100mg/kg, p.o.). HPLC analysis revealed the presence of gallic acid, ellagic acid and Punicalagins A&B.
CONCLUSION: The results demonstrated that ethanol pomegranate extract has an antinociceptive effect that may be related to the presence of identified phytochemicals.