Displaying publications 401 - 420 of 443 in total

Abstract:
Sort:
  1. Teh LK, Mohamed NI, Salleh MZ, Rohaizak M, Shahrun NS, Saladina JJ, et al.
    AAPS J, 2012 Mar;14(1):52-9.
    PMID: 22183189 DOI: 10.1208/s12248-011-9313-6
    CYP2D6 plays a major role in the metabolism of tamoxifen, and polymorphism of P-glycoprotein has been associated with resistance of many drug therapies. This study investigates the clinical impact of genetic variants of CYP2D6 and ABCB1 in breast cancer patients treated with tamoxifen. Blood samples from 95 breast cancer patients treated with tamoxifen were collected and genotyped for CYP2D6 and ABCB1 variants using allele-specific PCR method. Recurrence risks were calculated using Kaplan-Meier analysis and compared using the log-rank test. Patients carrying CYP2D6*10/*10 and heterozygous null allele (IM) showed higher risks of developing recurrence and metastasis (OR 13.14; 95% CI 1.57-109.94; P = 0.004) than patients with CYP2D6*1/*1 and *1/*10 genotypes. Patients with homozygous CC genotypes of ABCB1 C3435T showed a shorter time to recurrence. Patients who were CYP2D6 IM and homozygous CC genotype of C3435T have statistically significant higher risks of recurrence (P = 0.002). Similarly, median time to recurrence in these patients was only 12 months (95% CI = 0.79-23.2) compared to those without this combination which was 48 months (95% CI = 14.7-81.2). Patients with CYP2D6 IM and homozygous CC genotype of ABCB1 C3435T have shorter times to recurrence. The results confirmed the findings of previous studies and support FDA recommendation to perform pre-genotyping in patients before the choice of therapy is determined in breast cancer patients.
    Matched MeSH terms: Polymorphism, Genetic
  2. Teh LK, Langmia IM, Fazleen Haslinda MH, Ngow HA, Roziah MJ, Harun R, et al.
    J Clin Pharm Ther, 2012 Apr;37(2):232-6.
    PMID: 21507031 DOI: 10.1111/j.1365-2710.2011.01262.x
    Testing for cytochrome P450-2C9 (CYP2C9) and vitamin K epoxide reductase complex subunit 1 (VKORC1) variant alleles is recommended by the FDA for dosing of warfarin. However, dose prediction models derived from data obtained in one population may not be applicable to another. We therefore studied the impact of genetic polymorphisms of CYP2C9 and VKORC1 on warfarin dose requirement in Malaysia.
    Matched MeSH terms: Polymorphism, Genetic
  3. Wan Rosalina WR, Teh LK, Mohamad N, Nasir A, Yusoff R, Baba AA, et al.
    J Clin Pharm Ther, 2012 Apr;37(2):237-41.
    PMID: 21545474 DOI: 10.1111/j.1365-2710.2011.01272.x
    Genetic polymorphisms of thiopurine S-methyltransferase (TPMT) and inosine triphosphate pyrophosphohydrolase (ITPA 94C>A) contribute to variable responses, including fatal adverse effects, among subjects treated with 6-mercaptopurine (6-MP). Our objectives were to investigate the distribution of specific TPMT and ITPA genotypes in healthy subjects and patients with acute lymphoblastic leukaemia (ALL) from the three main ethnic groups (Malays, Chinese and Indians) in Malaysia and the association of the polymorphisms with adverse effects of 6-MP.
    Matched MeSH terms: Polymorphism, Genetic
  4. Chan SL, Suo C, Lee SC, Goh BC, Chia KS, Teo YY
    Pharmacogenomics J, 2012 Aug;12(4):312-8.
    PMID: 21383771 DOI: 10.1038/tpj.2011.7
    Genetic markers displaying highly significant statistical associations with complex phenotypes may not necessarily possess sufficient clinical validity to be useful. Understanding the contribution of these markers beyond readily available clinical biomarkers is particularly important in pharmacogenetics. We demonstrate the utility of genetic testing using the example of warfarin in a multi-ethnic setting comprising of three Asian populations that are broadly representative of the genetic diversity for half of the population in the world, especially as distinct interethnic differences in warfarin dose requirements have been previously established. We confirmed the roles of three well-established loci (CYP2C9, VKORC1 and CYP4F2) in explaining warfarin dosage variation in the three Asian populations. In addition, we assessed the relationship between ethnicity and the genotypes of these loci, observing strong correlations at VKORC1 and CYP4F2. Subsequently, we established the additional utility of these genetic factors in predicting warfarin dose beyond ethnicity and clinical biomarkers through performing a series of systematic cross-validation analyses of the relative predictive accuracies of various fixed-dose regimen, clinical and genetic models. Through a pharmacogenetics model for warfarin, we show the importance of genetic testing beyond readily available clinical biomarkers in predicting dose requirements, confirming the role of genetic profiling in personalized medicine.
    Matched MeSH terms: Polymorphism, Genetic
  5. Chook JB, Ngeow YF, Yap SF, Tan TC, Mohamed R
    J Med Virol, 2011 Apr;83(4):594-601.
    PMID: 21328372 DOI: 10.1002/jmv.22016
    Hepatitis B virus (HBV) and high liver iron deposits have both been associated with the development of cirrhosis. Among HBV factors, genotype and mutations in the basal core promoter (BCP) and precore regions have been most frequently studied but the evidence for a positive association with cirrhosis has been inconsistent. In this study, sera from persons with chronic HBV infection with and without cirrhosis were used for whole HBV genome analysis and for the estimation of serum iron marker (serum iron or ferritin) levels. Single codon analysis showed that the precore wild-type, TGG (nt 1,895-1,897), gave the highest accuracy (77.5%) for the identification of cirrhosis compared to other codons. When TGG was analyzed together with the precore start codon wild-type, ATG (nt 1,814-1,816), the accuracy was improved to 80.0% (odds ratio=35.29; 95% confidence interval=3.87-321.93; Phi=0.629; P<0.001). When the serum iron marker was included for analysis, it was clear that a combination of a precore wild-type and high serum iron marker gave a better accuracy (90.0%) (odds ratio=107.67; 95% confidence interval=10.21-1,135.59; Phi=0.804; P<0.001) for the identification of cirrhosis than either biomarker alone. It appeared that a combined use of both these biomarkers might help to predict the development of cirrhosis in a person with chronic HBV infection, but longitudinal studies are required to test this hypothesis.
    Matched MeSH terms: Polymorphism, Genetic
  6. Tan PC, Hassan SK, Mohamad NA, Gan SH
    J Clin Pharm Ther, 2012 Feb;37(1):100-4.
    PMID: 21128989 DOI: 10.1111/j.1365-2710.2010.01232.x
    WHAT IS KNOWN AND OBJECTIVE: Interindividual variability in drug responses may be attributable to genetically determined alteration in enzyme activity. In this study, we investigated the association between cytochrome P450 3A4 (CYP3A4) genetic polymorphisms and post-operative fentanyl requirements.

    METHODS: Patients (n = 94) scheduled for gynaecological laparotomy received i.v. fentanyl infusion (3 μg/kg/h) after induction of general anaesthesia. Post-operative fentanyl requirements were quantified by using a patient-controlled analgesia and the number of i.v. fentanyl rescue analgesia required were recorded. Pain control was assessed using visual analogue scores (VAS) and fentanyl's adverse effects were documented. CYP3A4*4, CYP3A4*5 and CYP3A4*18 alleles of cytochrome P450 3A4 were identified by polymerase chain reaction-restriction fragment length polymorphism. Differences in fentanyl requirements, VAS scores and adverse effects among the various genotypes were compared.

    RESULTS AND DISCUSSION: No CYP3A4*4 and CYP3A4*5 alleles were detected. Eighty-nine patients (94·7%) were wild-type, five (5·3%) were heterozygous and none was homozygous. No significant difference was demonstrated between the genotype groups in terms of fentanyl consumption, pain control and adverse effects.

    WHAT IS NEW AND CONCLUSION: CYP3A4*4 and CYP3A4*5 are rare in the Malaysian Malay population. Genetic polymorphism of CYP3A4*18 may not play an important role in influencing postoperative fentanyl requirements.

    Matched MeSH terms: Polymorphism, Genetic
  7. Singh R, Ting JG, Pan Y, Teh LK, Ismail R, Ong CE
    Drug Metab. Pharmacokinet., 2008;23(3):165-74.
    PMID: 18574320
    The work described in this study aimed to express CYP2C8 wild-type and mutant proteins in bacterial expression system and to use the expressed proteins to investigate the structural and functional consequences of a reported allele CYP2C8(*)4 (carrying Ile264Met substitution) on protein activity. Ile264 was replaced by three different amino acids resulting in three mutant constructs, 2C8I264M, 2C8I264R and 2C8I264D. The presence of isoleucine at position 264 in CYP2C8 was found to be important for proper haem insertion and protein folding; whereas bulkier or charged residues were highly disruptive resulting in inactive proteins with minimum spectral and catalytic activities. This was evidenced from the low levels of Soret peak at 450 nm and negligible levels of tolbutamide methylhydroxylase activity. Kinetic study using paclitaxel indicated that all three mutants exhibited only 9.7 to 35.4% of the activity level observed in the wild-type. In addition, the mutants were more sensitive to proteinase K digestion, indicating a possible alteration of conformation. The combined effects of protein instability and compromised catalytic activity resulted in defective CYP2C8 protein which may have clinical implications in carriers of CYP2C8*4, particularly in terms of their capacity to clear potent drugs and their susceptibility to adverse drug reactions.
    Matched MeSH terms: Polymorphism, Genetic
  8. Rehman A, Ismail SB, Naing L, Roshan TM, Abdul Rahman AR
    Am J Hypertens, 2007 Feb;20(2):184-9.
    PMID: 17261465 DOI: 10.1016/j.amjhyper.2006.07.015
    BACKGROUND: Data comparing the effect of losartan and perindopril on aortic stiffness among hypertensive subjects without A(1166)C polymorphism was not available.
    METHODS: The short-term and long-term effects of losartan (50 mg) and perindopril (4 mg) on aortic stiffness measured as carotid femoral pulse wave velocity (PWV) were compared in 39 middle-aged Malay subjects with mild-to-moderate hypertension in a 4-month, double-blind, randomized, controlled, parallel-design study.
    RESULTS: Four-month treatment with both drugs showed a significant reduction in blood pressure (BP) (P < .005) and PWV (P < .05) as compared to the baseline. On the other hand 1-month treatment showed a significant reduction in BP only in perindopril group (P < .05) but not in the losartan group. There was no significant reduction in pulse pressure and PWV after 1 month treatment by both drugs. No significant difference was seen in reduction in BP after 1 month and 4 months treatment between the two drugs. Similarly no significant difference was seen in reduction in PWV between the two drugs after 1 month (P = .613) and 4 months (P = .521) of treatment. Reduction in PWV by losartan (r = 0.470) and perindopril (r = 0.457) correlated significantly only with reduction in DBP (P < .05) and remained significant even after controlling for reduction in DBP (P < .05). Reduction in PWV by both losartan and perindopril was independent of reduction in BP by these drugs.
    CONCLUSIONS: These results showed that long-term treatment with losartan shows similar pressure independent reduction in PWV as perindopril among Malay hypertensive subjects with a homogenous "AA" genotype for angiotensin II type 1 receptor and may serve as a suitable alternative to perindopril.
    Matched MeSH terms: Polymorphism, Genetic
  9. Shahar S, Lee LK, Rajab N, Lim CL, Harun NA, Noh MF, et al.
    Nutr Neurosci, 2013 Jan;16(1):6-12.
    PMID: 23321337 DOI: 10.1179/1476830512Y.0000000013
    The influence of nutritional parameters and genetic susceptibility on poor cognitive impairment has been documented; however, the association between lipid-soluble vitamins with genetic susceptibility on mild cognitive impairment (MCI) has not yet been studied extensively.
    Matched MeSH terms: Polymorphism, Genetic
  10. Mohd Abd Razak MR, Sastu UR, Norahmad NA, Abdul-Karim A, Muhammad A, Muniandy PK, et al.
    PLoS One, 2016;11(3):e0152415.
    PMID: 27023787 DOI: 10.1371/journal.pone.0152415
    Malaysia has a national goal to eliminate malaria by 2020. Understanding the genetic diversity of malaria parasites in residual transmission foci can provide invaluable information which may inform the intervention strategies used to reach elimination targets. This study was conducted to determine the genetic diversity level of P. falciparum isolates in malaria residual foci areas of Sabah. Malaria active case detection was conducted in Kalabakan and Kota Marudu. All individuals in the study sites were screened for malaria infection by rapid diagnostic test. Blood from P. falciparum-infected individuals were collected on filter paper prior to DNA extraction. Genotyping was performed using merozoite surface protein-1 (MSP-1), merozoite surface protein-2 (MSP-2), glutamate rich protein (GLURP) and 10 neutral microsatellite loci markers. The size of alleles, multiplicity of infection (MOI), mean number of alleles (Na), expected heterozygosity (He), linkage disequilibrium (LD) and genetic differentiation (FST) were determined. In Kalabakan, the MSP-1 and MSP-2 alleles were predominantly K1 and FC27 family types, respectively. The GLURP genotype VI (751-800 bp) was predominant. The MOI for MSP-1 and MSP-2 were 1.65 and 1.20, respectively. The Na per microsatellite locus was 1.70. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.17, 0.37, 0.70 and 0.33, respectively. In Kota Marudu, the MSP-1 and MSP-2 alleles were predominantly MAD20 and 3D7 family types, respectively. The GLURP genotype IV (651-700 bp) was predominant. The MOI for both MSP-1 and MSP-2 was 1.05. The Na per microsatellite locus was 3.60. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.24, 0.25, 0.69 and 0.30, respectively. A significant LD was observed in Kalabakan (0.495, p<0.01) and Kota Marudu P. falciparum populations (0.601, p<0.01). High genetic differentiation between Kalabakan and Kota Marudu P. falciparum populations was observed (FST = 0.532). The genetic data from the present study highlighted the limited diversity and contrasting genetic pattern of P. falciparum populations in the malaria declining areas of Sabah.
    Matched MeSH terms: Polymorphism, Genetic
  11. Ahmed RH, Huri HZ, Al-Hamodi Z, Salem SD, Al-Absi B, Muniandy S
    PLoS One, 2016;11(4):e0154369.
    PMID: 27111895 DOI: 10.1371/journal.pone.0154369
    BACKGROUND: Genetic polymorphisms of the Dipeptidyl Peptidase 4 (DPP4) gene may play a role in the etiology of type 2 diabetes mellitus (T2DM). This study aimed to investigate the possible association of single nucleotide polymorphisms (SNPs) of the DPP4 gene in Malaysian subjects with T2DM and evaluated whether they had an effect on the serum levels of soluble dipeptidyl peptidase 4 (sDPP-IV).

    METHOD: Ten DPP4 SNPs were genotyped by TaqMan genotyping assays in 314 subjects with T2DM and 235 controls. Of these, 71 metabolic syndrome (MetS) subjects were excluded from subsequent analysis. The odds ratios (ORs) and their 95% confidence interval (CIs) were calculated using multiple logistic regression for the association between the SNPs of DPP4 and T2DM. In addition, the serum levels of sDPP-IV were investigated to evaluate the association of the SNPs of DPP4 with the sDPP-IV levels.

    RESULTS: Dominant, recessive, and additive genetic models were employed to test the association of DPP4 polymorphisms with T2DM, after adjusting for age, race, gender and BMI. The rs12617656 was associated with T2DM in Malaysian subjects in the recessive genetic model (OR = 1.98, p = 0.006), dominant model (OR = 1.95, p = 0.008), and additive model (OR = 1.63, p = 0.001). This association was more pronounced among Malaysian Indians, recessive (OR = 3.21, p = 0.019), dominant OR = 3.72, p = 0.003) and additive model (OR = 2.29, p = 0.0009). The additive genetic model showed that DPP4 rs4664443 and rs7633162 polymorphisms were associated with T2DM (OR = 1.53, p = 0.039), and (OR = 1.42, p = 0.020), respectively. In addition, the rs4664443 G>A polymorphism was associated with increased sDPP-IV levels (p = 0.042) in T2DM subjects.

    CONCLUSIONS: DPP4 polymorphisms were associated with T2DM in Malaysian subjects, and linked to variations in sDPP-IV levels. In addition, these associations were more pronounced among Malaysian Indian subjects.

    Matched MeSH terms: Polymorphism, Genetic
  12. Zahari Z, Lee CS, Ibrahim MA, Musa N, Mohd Yasin MA, Lee YY, et al.
    Drug Alcohol Depend, 2016 08 01;165:143-50.
    PMID: 27289271 DOI: 10.1016/j.drugalcdep.2016.05.028
    BACKGROUND: CYP2B6 polymorphisms contribute to inter-individual variations in pharmacokinetics of methadone. Increased pain sensitivity is frequently reported by opioid dependent patients on methadone maintenance therapy (MMT). It is possible, therefore, that genetic polymorphisms in CYP2B6, which affects the metabolism of methadone, influence pain sensitivity among patients on MMT. This study investigated CYP2B6 polymorphisms and pain sensitivity in this group.

    METHODS: The cold pressor pain responses of 148 opioid dependent patients receiving MMT were evaluated using the cold pressor test (CPT). DNA was extracted from whole blood and subjected to polymerase chain reaction (PCR)-genotyping.

    RESULTS: Of the 148 subjects, 77 (52.0%) were carriers of CYP2B6*6 allele. CYP2B6*6 allele carriers had shorter cold pain threshold and pain tolerance times than non-carriers of CYP2B6*6 allele (21.05s vs 33.69s, p=0.036 and 27.15s vs 44.51s, p=0.020, respectively). Pain intensity scores of the CYP2B6*6 allele carriers was 67.55, whereas that of the CYP2B6*6 allele non-carriers was 64.86 (p=0.352).

    CONCLUSION: Our study indicates that the CYP2B6*6 allele is associated with a lower pain threshold and lower pain tolerance among males with opioid dependence on MMT. The CYP2B6*6 allele may provide a mechanistic explanation for clinical observations of heightened pain sensitivity among opioid dependent patients receiving MMT.

    Matched MeSH terms: Polymorphism, Genetic
  13. Zainal Abidin S, Tan EL, Chan SC, Jaafar A, Lee AX, Abd Hamid MH, et al.
    BMC Neurol, 2015;15:59.
    PMID: 25896831 DOI: 10.1186/s12883-015-0316-2
    Impulse control disorder (ICD) and behaviours (ICB) represent a group of behavioural disorders that have become increasingly recognised in Parkinson's disease (PD) patients who previously used dopaminergic medications, particularly dopamine agonists and levodopa. It has been suggested that these medications can lead to the development of ICB through the abnormal modulation of dopaminergic transmission and signalling in the mesocorticolimbic dopaminergic system. Several studies have reported an association between polymorphisms in the dopamine receptor (DRD) and N-methyl-D-aspartate 2B (GRIN2B) genes with the development of ICB in PD (PD-ICB) patients. Thus, this study aimed to investigate the association of selected polymorphisms within the DRD and GRIN2B genes with the development of ICB among PD patients using high resolution melt (HRM) analysis.
    Matched MeSH terms: Polymorphism, Genetic
  14. Horn M, Fritsche TR, Linner T, Gautom RK, Harzenetter MD, Wagner M
    Int J Syst Evol Microbiol, 2002 Mar;52(Pt 2):599-605.
    PMID: 11931173 DOI: 10.1099/00207713-52-2-599
    All obligate bacterial endosymbionts of free-living amoebae currently described are affiliated with the alpha-Proteobacteria, the Chlamydiales or the phylum Cytophaga-Flavobacterium-Bacteroides. Here, six rod-shaped gram-negative obligate bacterial endosymbionts of clinical and environmental isolates of Acanthamoeba spp. from the USA and Malaysia are reported. Comparative 16S rDNA sequence analysis demonstrated that these endosymbionts form a novel, monophyletic lineage within the beta-Proteobacteria, showing less than 90% sequence similarity to all other recognized members of this subclass. 23S rDNA sequence analysis of two symbionts confirmed this affiliation and revealed the presence of uncommon putative intervening sequences of 146 bp within helix-25 that shared no sequence homology to any other bacterial rDNA. In addition, the 23S rRNA of these endosymbionts displayed one polymorphism at the target site of oligonucleotide probe BET42a that is conserved in all other sequenced beta-Proteobacteria. Intra-cytoplasmatic localization of the endosymbionts within the amoebal host cells was confirmed by electron microscopy and fluorescence in situ hybridization with a specific 16S rRNA-targeted oligonucleotide probe. Based on these findings, the provisional name 'Candidatus Procabacter acanthamoebae' is proposed for classification of a representative of the six endosymbionts of Acanthamoeba spp. studied in this report. Comparative 18S rDNA sequence analysis of the Acanthamoeba host cells revealed their membership with either Acanthamoeba 18S rDNA sequence type T5 (Acanthamoeba lenticulata) or sequence type T4, which comprises the majority of all Acanthamoeba isolates.
    Matched MeSH terms: Polymorphism, Genetic
  15. Ravichandran M, Doolan DL, Cox-Singh J, Hoffman SL, Singh B
    Parasite Immunol., 2000 Sep;22(9):469-73.
    PMID: 10972854
    Considerable effort is directed at the development of a malaria vaccine that elicits antigen-specific T-cell responses against pre-erythrocytic antigens of Plasmodium falciparum. Genetic restriction of host T-cell responses and polymorphism of target epitopes on parasite antigens pose obstacles to the development of such a vaccine. Liver stage-specific antigen-1 (LSA-1) is a prime candidate vaccine antigen and five T-cell epitopes that are degenerately restricted by HLA molecules common in most populations have been identified on LSA-1. To define the extent of polymorphism within these T-cell epitopes, the N-terminal non-repetitive region of the LSA-1 gene from Malaysian P. falciparum field isolates was sequenced and compared with data of isolates from Brazil, Kenya and Papua New Guinea. Three of the T-cell epitopes were completely conserved while the remaining two were highly conserved in the isolates examined. Our findings underscore the potential of including these HLA-degenerate T-cell epitopes of LSA-1 in a subunit vaccine.
    Matched MeSH terms: Polymorphism, Genetic
  16. Ishak IH, Kamgang B, Ibrahim SS, Riveron JM, Irving H, Wondji CS
    PLoS Negl Trop Dis, 2017 01;11(1):e0005302.
    PMID: 28114328 DOI: 10.1371/journal.pntd.0005302
    BACKGROUND: Dengue control and prevention rely heavily on insecticide-based interventions. However, insecticide resistance in the dengue vector Aedes aegypti, threatens the continued effectiveness of these tools. The molecular basis of the resistance remains uncharacterised in many endemic countries including Malaysia, preventing the design of evidence-based resistance management. Here, we investigated the underlying molecular basis of multiple insecticide resistance in Ae. aegypti populations across Malaysia detecting the major genes driving the metabolic resistance.

    METHODOLOGY/PRINCIPAL FINDINGS: Genome-wide microarray-based transcription analysis was carried out to detect the genes associated with metabolic resistance in these populations. Comparisons of the susceptible New Orleans strain to three non-exposed multiple insecticide resistant field strains; Penang, Kuala Lumpur and Kota Bharu detected 2605, 1480 and 425 differentially expressed transcripts respectively (fold-change>2 and p-value ≤ 0.05). 204 genes were commonly over-expressed with monooxygenase P450 genes (CYP9J27, CYP6CB1, CYP9J26 and CYP9M4) consistently the most up-regulated detoxification genes in all populations, indicating that they possibly play an important role in the resistance. In addition, glutathione S-transferases, carboxylesterases and other gene families commonly associated with insecticide resistance were also over-expressed. Gene Ontology (GO) enrichment analysis indicated an over-representation of GO terms linked to resistance such as monooxygenases, carboxylesterases, glutathione S-transferases and heme-binding. Polymorphism analysis of CYP9J27 sequences revealed a high level of polymorphism (except in Joho Bharu), suggesting a limited directional selection on this gene. In silico analysis of CYP9J27 activity through modelling and docking simulations suggested that this gene is involved in the multiple resistance in Malaysian populations as it is predicted to metabolise pyrethroids, DDT and bendiocarb.

    CONCLUSION/SIGNIFICANCE: The predominant over-expression of cytochrome P450s suggests that synergist-based (PBO) control tools could be utilised to improve control of this major dengue vector across Malaysia.

    Matched MeSH terms: Polymorphism, Genetic
  17. Yong RY, Gan LS, Chang YM, Yap EP
    Hum Genet, 2007 Nov;122(3-4):237-49.
    PMID: 17588179
    Amelogenin paralogs on Chromosome X (AMELX) and Y (AMELY) are commonly used sexing markers. Interstitial deletion of Yp involving the AMELY locus has previously been reported. The combined frequency of the AMELY null allele in Singapore and Malaysia populations is 2.7%, 0.6% in Indian and Malay ethnic groups respectively. It is absent among 541 Chinese screened. The null allele in this study belongs to 3 Y haplogroups; J2e1 (85.7%), F* (9.5%) and D* (4.8%). Low and high-resolution STS mapping, followed by sequence analysis of breakpoint junction confirmed a large deletion of 3 to 3.7-Mb located at the Yp11.2 region. Both breakpoints were located in TSPY repeat arrays, suggesting a non-allelic homologous recombination (NAHR) mechanism of deletion. All regional null samples shared identical breakpoint sequences according to their haplogroup affiliation, providing molecular evidence of a common ancestry origin for each haplogroup, and at least 3 independent deletion events recurred in history. The estimated ages based on Y-SNP and STR analysis were approximately 13.5 +/- 3.1 kyears and approximately 0.9 +/- 0.9 kyears for the J2e1 and F* mutations, respectively. A novel polymorphism G > A at Y-GATA-H4 locus in complete linkage disequilibrium with J2e1 null mutations is a more recent event. This work re-emphasizes the need to include other sexing markers for gender determination in certain regional populations. The frequency difference among global populations suggests it constitutes another structural variation locus of human chromosome Y. The breakpoint sequences provide further information to a better understanding of the NAHR mechanism and DNA rearrangements due to higher order genomic architecture.
    Matched MeSH terms: Polymorphism, Genetic
  18. Dong AN, Ahemad N, Pan Y, Palanisamy UD, Yiap BC, Ong CE
    Naunyn Schmiedebergs Arch Pharmacol, 2019 08;392(8):1015-1029.
    PMID: 31025144 DOI: 10.1007/s00210-019-01651-0
    One major source of inter-individual variability in drug pharmacokinetics is genetic polymorphism of the cytochrome P450 (CYP) genes. This study aimed to elucidate the enzyme kinetic and molecular basis for altered activity in three major alleles of CYP2D6, namely CYP2D6*2, CYP2D6*10 and CYP2D6*17. The E. coli-expressed allelic variants were examined using substrate (venlafaxine and 3-cyano-7-ethoxycoumarin[CEC]) and inhibitor (quinidine, fluoxetine, paroxetine, terbinafine) probes in enzyme assays as well as molecular docking. The kinetics data indicated that R296C and S486T mutations in CYP2D6*2 have caused enhanced ligand binding (enhanced intrinsic clearance for venlafaxine and reduced IC50 for quinidine, paroxetine and terbinafine), suggesting morphological changes within the active site cavity that favoured ligand docking and binding. Mutations in CYP2D6*10 and CYP2D6*17 tended to cause deleterious effect on catalysis, with reduced clearance for venlafaxine and CEC. Molecular docking indicated that P34S and T107I, the unique mutations in the alleles, have negatively impacted activity by affecting ligand access and binding due to alteration of the substrate access channel and active site morphology. IC50 values however were quite variable for quinidine, fluoxetine and terbinafine, and a general decrease in IC50 was observed for paroxetine, suggesting ligand-specific altered susceptibility to inhibition in the alleles. This study indicates that CYP2D6 allele selectivity for ligands was not solely governed by changes in the active site architecture induced by the mutations, but that the intrinsic properties of the substrates and inhibitors also played vital role.
    Matched MeSH terms: Polymorphism, Genetic
  19. Zahary MN, Kaur G, Abu Hassan MR, Singh H, Naik VR, Ankathil R
    World J Gastroenterol, 2012 Feb 28;18(8):814-20.
    PMID: 22371642 DOI: 10.3748/wjg.v18.i8.814
    To investigate the protein expression profile of mismatch repair (MMR) genes in suspected cases of Lynch syndrome and to characterize the associated germline mutations.
    Matched MeSH terms: Polymorphism, Genetic
  20. Yeap LL, Lim KS, Ng CC, Hui-Ping Khor A, Lo YL
    Ther Drug Monit, 2014 Feb;36(1):3-9.
    PMID: 24342894 DOI: 10.1097/FTD.0000000000000024
    The authors describe a case of a 37-year-old Malay lady with an unusually slow carbamazepine clearance, which may be related to genetic polymorphisms of drug metabolizing enzymes and transporters. When given a small daily dose of 200 mg immediate-release carbamazepine, this patient experienced drowsiness. Subsequently, she reduced her carbamazepine dose to 200 mg twice a week (on Mondays and Fridays), resulting in poor seizure control. At the same time, the patient was diagnosed with hyperthyroidism and was given carbimazole and propranolol. Hyperthyroidism and the concurrent use of these antihyperthyroid agents may have further slowed down the metabolism of carbamazepine. Therapeutic drug monitoring of carbamazepine was carried out, and a slow carbamazepine clearance of 1.45 L·h⁻¹ per 70 kg was observed. Genotyping of selected genetic variants in CYP3A4, CYP3A5, EPHX1, ABCB1, and ABCC2 revealed that she has CYP3A5*3/*3 and ABCB1 3435-CC genotypes. Both genotypes have been shown to be associated with higher adjusted mean serum carbamazepine concentration in Chinese and Korean patients with epilepsy. Physicians should be vigilant about the risk of adverse effects among patients with a slow carbamazepine clearance, especially in Malays. Simulations of carbamazepine dosing regimen based on the pharmacokinetic parameters of this patient were performed to allow individualization of drug therapy.
    Matched MeSH terms: Polymorphism, Genetic
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links