METHODS: A comprehensive search was conducted in CENTRAL, MEDLINE, SCOPUS, Google Scholars, World Health Organization Trials Portal, ClinicalTrials.gov, Clinical Trial Registry of India, and AYUSH Research Portal for all appropriate trials. Randomized controlled trials that examined the effect of Ashwagandha extract versus placebo on sleep in human participants 18 years old and above were considered. Two authors independently read all trials and independently extracted all relevant data. The primary outcomes were sleep quantity and sleep quality. The secondary outcomes were mental alertness on rising, anxiety level, and quality of life.
RESULTS: A total of five randomized controlled trials containing 400 participants were analyzed. Ashwagandha extract exhibited a small but significant effect on overall sleep (Standardized Mean Difference -0.59; 95% Confidence Interval -0.75 to -0.42; I2 = 62%). The effects on sleep were more prominent in the subgroup of adults diagnosed with insomnia, treatment dosage ≥600 mg/day, and treatment duration ≥8 weeks. Ashwagandha extract was also found to improve mental alertness on rising and anxiety level, but no significant effect on quality of life. No serious side effects were reported.
CONCLUSION: Ashwagandha extract appears to has a beneficial effect in improving sleep in adults. However, data on the serious adverse effects of Ashwagandha extract are limited, and more safety data would be needed to assess whether it would be safe for long-term use.
METHODS: Antibacterial activity of B. kockiana flower was evaluated qualitatively and quantitatively using disc diffusion assay and microbroth dilution method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of extracts were examined. Phytochemical analysis was performed to determine the classes of phytochemicals in the extracts. Bioactivity guided isolation was employed to purify the antibacterial agents and identified via various spectroscopy methods. Scanning electron microscopy (SEM) technique was used to evaluate the antibacterial mechanism of extract and compounds isolated.
RESULTS: B. kockiana flower was found to exhibit fairly strong antibacterial activity towards both strains of MRSA bacteria used, MIC varies from 62.5-250 μg/mL. Tannins and flavonoids have been detected in the phytochemical analysis. Gallic acid and its ester derivatives purified from ethyl acetate extract could inhibit MRSA at 250-500 μg/mL. SEM revealed that the cells have undergone plasmolysis upon treatment with the extract and compounds.
CONCLUSION: Tannins and polyphenols are the antibacterial components towards MRSA in B. kockiana. Massive leakage of the cell content observed in treated cells showed that the phytochemicals have changed the properties of the cell membranes. Amphiphilic nature of the compounds exhibited the antibacterial activity towards MRSA via three stages: (1) cell membrane attachment; (2) cell membrane fluidity modification; and (3) cell membrane structure disruption.
MATERIALS AND METHODS: International and Thai databases were searched from inception to February 2017. Clinical trials investigating effects of PM menopausal or postmenopausal women were included. Outcomes were self-reported menopausal symptoms, serum reproductive hormones, urino-genital tract function, and bone surrogates. Methodological quality was assessed by Cochrane risk-of-bias v2.0, and a 22-parameter quality score based on the CONSORT checklist for herbal medicines.
RESULTS: Eight studies (9 articles) used data from 309 menopausal patients. Five-studies demonstrated that PM was associated with climacteric scores reduced by ~50% compared to baseline. Other PM studies using limited numbers of placebo participants suggested improved vaginal and other urogenital tract symptoms. Bone alkaline phosphatase halved (suggesting lowered bone turnover). Variable serum reproductive hormone levels suggested menopausal status differed between studies. PM active ingredients and sources were not defined. Adverse event rates (mastodynia, vaginal spotting, dizziness) were similar in all groups (PM, conjugated equine estrogen, and placebos) but serum C-reactive protein doubled. These studies had design and reporting deficiencies, high risks of biases, and low quality scores.
CONCLUSIONS: The efficacy of PM on menopausal symptoms remains inconclusive because of methodological short-comings especially placebo effects inherent in self-assessment/recall questionnaires and no PM standardization. PM efficacy and safety need a fundamental re-appraisal by: (i) cohort (retro- and prospective) studies on current users to define its traditional use for rejuvenation; (ii) tightly coupling long-term efficacy to safety of well-defined PM and multiple end-points; (iii) using study design related to current understanding of menopause progression and estrogen pharmacology (iv) robust pharmacovigilance.
METHODS: This study was conducted to determine the effects of ethyl acetate (45 L Ea), ethanol (45 L Et), and hexane (45 L H) leaf extracts of G. parvifolia on the infectivity of pseudorabies virus (PrV) in Vero cells. The antiviral effects of the extracts were determined by cytopathic effect (CPE), inhibition, attachment, and virucidal assays.
RESULTS: The 50% cytotoxicity concentration (CC50) values obtained were 237.5, 555.0, and
AIM: The study aimed to investigate the effect of P.s on atherosclerotic changes in hypercholesterolemic rabbits.
METHODS: Forty two male New Zealand white rabbits were divided into seven groups. C - control group fed normal rabbit chow, CH - cholesterol diet (1% cholesterol), W1 - 1% cholesterol with water extract of P.s (62.5 mg/kg), W2 - 1% cholesterol with water extract of P.s (125 mg/kg), W3 - 1% cholesterol with water extract of P.s (250 mg/kg), W4 - 1% cholesterol with water extract of P.s (500 mg/kg) and Smv - 1% cholesterol supplemented with simvistatin drug (1.2 mg/kg). All rabbits were treated for 10 weeks. Following 10 weeks of supplementation, the animals were sacrificed and the aortic tissue was taken for histological study.
RESULTS: Rabbits fed only with high cholesterol diet 1% cholesterol (CH) showed focal fatty streak lesions compared to the C group and 1% cholesterol supplemented with simvistatin drug (Smv) group. Atherosclerotic lesions in the 1% cholesterol group supplemented with P.s (500 mg/kg) i.e. W4 group showed significant reduction (30 + or - 6.0%, p < 0.05) in fatty streak compared to the high cholesterol group (85.6 + or - 4.1%) under Sudan IV stain. The atherosclerotic lesions under transmission electron microscope showed reduction in foam cells in the treatment groups compared to the CH groups.
CONCLUSION: Administration of P.s extract has protective effect against atheroscleros.
METHODS: Liquid-liquid partition chromatography was used to separate methanolic extract to get hexane, ethyl acetate, butanol and residual aqueous fractions. The total antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazy (DPPH) radical scavenging and ferric reducing antioxidant power assay (FRAP). The antidiabetic activity of methanol extract and its consequent fractions were examined by α-glucosidase inhibitory bioassay. The chemical profiling was carried out by gas chromatography coupled with quadrupole time-of-flight mass spectrometry (GC Q-TOF MS).
RESULTS: The total yield for methanol extraction was (12.63 ± 0.98) % (w/w) and highest fractionated value found for residual aqueous (52.25 ± 1.01) % (w/w) as compared to the other fractions. Significant DPPH free radical scavenging activity was found for methanolic extract (63.07 ± 0.11) % and (79.98 ± 0.31) % for ethyl acetate fraction among all the fractions evaluated. Methanol extract was the most prominent in case of FRAP (141.89 ± 0.87 μg AAE/g) whereas most effective reducing power observed in ethyl acetate fraction (133.6 ± 0.2987 μg AAE/g). The results also indicated a substantial α-glucosidase inhibitory activity for butanol fraction (72.16 ± 1.0) % and ethyl acetate fraction (70.76 ± 0.49) %. The statistical analysis revealed that total phenolic and total flavonoid content of the samples had the significant (p
METHOD: M. oleifera leaves, seeds and pods were extracted with 80% of ethanol. Individual compounds were isolated using a column chromatographic technique and elucidated based on the nuclear magnetic resonance (NMR) and electrospray ionisation mass spectrometry (ESIMS) spectral data. The anti-allergic activity of the extracts, isolated compounds and ketotifen fumarate as a positive control was evaluated using rat basophilic leukaemia (RBL-2H3) cells for early and late phases of allergic reactions. The early phase was determined based on the inhibition of beta-hexosaminidase and histamine release; while the late phase was based on the inhibition of interleukin (IL-4) and tumour necrosis factor (TNF-α) release.
RESULTS: Two new compounds; ethyl-(E)-undec-6-enoate (1) and 3,5,6-trihydroxy-2-(2,3,4,5,6-pentahydroxyphenyl)-4H-chromen-4-one (2) together with six known compounds; quercetin (3), kaempferol (4), β-sitosterol-3-O-glucoside (5), oleic acid (6), glucomoringin (7), 2,3,4-trihydroxybenzaldehyde (8) and stigmasterol (9) were isolated from M. oleifera extracts. All extracts and the isolated compounds inhibited mast cell degranulation by inhibiting beta-hexosaminidase and histamine release, as well as the release of IL-4 and TNF-α at varying levels compared with ketotifen fumarate.
CONCLUSION: The study suggested that M. oleifera and its isolated compounds potentially have an anti-allergic activity by inhibiting both early and late phases of allergic reactions.