RESULTS: The results show that the LL muscle-drip loss was greater in animals supplemented with 5% corn compared to the other groups. Higher pH values of SS and LL muscles were observed in animals supplemented with 5 and 10% corn. Furthermore, the L* value of ST muscle was increased in lambs fed on 5% corn while, reduced in those fed on 0% corn, but the a* and b* values were not significantly different in the treatment groups. The fatty acid composition of the SS muscles showed that lambs fed on 10% corn had higher levels of sum PUFA n-3 compared to those fed on 0% corn. The concentration of C18:1trans11 and CLA c12 t10 in ST muscle from the lambs fed on supplemented diets were higher than those of the controls.
CONCLUSION: This study has concluded the supplementation of corn as a source of energy into a PKC urea-treated rice straw-based diet increased the PUFA concentrations of muscles as compared to control groups.
STUDY DESIGN: A cross-sectional survey was done involving 707 different flavours and packaging of instant noodles sold in six hypermarkets and retailer chains in Malaysia and the corresponding brand's official websites in 2017.
METHODS: The salt content (gram per serving and per 100 g) was collected from the product packaging and corresponding brand's official website.
RESULTS: Of the 707 different packaging and flavours of instant noodles, only 62.1% (n=439) provided the salt content in their food label.The mean (±SD) salt per 100 g of instant noodles was 4.3±1.5 g and is nearly four times higher than the salt content of food classified in Malaysia as a high salt content (>1.2 g salt per 100 g). The salt content for instant noodle per packaging ranged from 0.7 to 8.5 g. 61.7% of the instant noodles exceeded the Pacific Salt Reduction Target, 11.8% exceeded the WHO recommended daily salt intake of <5.0 per day and 5.50% exceeded Malaysia Salt Action Target. 98% of instant noodles will be considered as high salt food according to the Malaysia Guidelines.The probability of the instant noodles without mixed flavour (n=324) exceeding the Pacific Salt Reduction Target was tested on univariate and multivariate analysis. Instant noodles with soup, Tom Yam flavour, pork flavour and other flavours were found to be predictors of instant noodles with the tendency to exceed Pacific Salt Reduction Target when compared with instant noodles without mixed flavours (p<0.05).
CONCLUSION: Only 62% of instant noodles displayed the salt content on their food label. Salt content in instant noodles is very high, with 90% exceeding the daily salt intake recommended by WHO. Prompt action from regulatory and health authorities is needed to reduce the salt content in instant noodles.
MATERIALS AND METHODS: Overall, 180 samples were used for polymerization shrinkage (buoyancy and optical methods) and degree of conversion tests in which they were divided into Group 1, nanofilled composite (Filtek-Z350- XT; 3M ESPE, St Paul, MN 55144-1000, USA), Group 2, microhybrid composite (Zmack-Comp), and Group 3, nanohybrid composite (Zr-Hybrid). Polymerization shrinkage test was performed using buoyancy and optical methods. For buoyancy method, samples were weighed in air and water to calculate the shrinkage value, whereas, for optical method, images of nonpolymerized samples were captured under a digital microscope and recaptured again after light-cured to calculate the percentage of shrinkage. Degree of conversion was tested using Fourier-transform infrared spectroscopy spectrometer.
STATISTICAL ANALYSIS: Data were analyzed using one-way analysis of variance complemented by post hoc Dunnett's T3 test for polymerization shrinkage and Tukey's honestly significant difference test for degree of conversion. Level of significance was set at p < 0.05.
RESULTS: Group 3 demonstrated similar polymerization shrinkage with Group 1, but lower shrinkage (p < 0.05) than Group 2 based on buoyancy method. However, optical method (p < 0.05) showed that Group 3 had the lowest shrinkage, followed by Group 1 and lastly Group 2. Besides, Group 3 showed a significantly higher degree of conversion (p < 0.05) than Group 1 and comparable conversion value with Group 2.
CONCLUSIONS: Zirconia-reinforced rice husk nanohybrid composite showed excellent shrinkage and conversion values, hence can be considered as an alternative to commercially available composite resins.