Displaying publications 401 - 420 of 1017 in total

Abstract:
Sort:
  1. Haque MA, Rafii MY, Yusoff MM, Ali NS, Yusuff O, Arolu F, et al.
    Mol Biol Rep, 2023 Mar;50(3):2795-2812.
    PMID: 36592290 DOI: 10.1007/s11033-022-07853-9
    Natural and man-made ecosystems worldwide are subjected to flooding, which is a form of environmental stress. Genetic variability in the plant response to flooding involves variations in metabolism, architecture, and elongation development that are related with a low oxygen escape strategy and an opposing quiescence scheme that enables prolonged submergence endurance. Flooding is typically associated with a decrease in O2 in the cells, which is especially severe when photosynthesis is absent or limited, leading to significant annual yield losses globally. Over the past two decades, considerable advancements have been made in understanding of mechanisms of rice adaptation and tolerance to flooding/submergence. The mapping and identification of Sub1 QTL have led to the development of marker-assisted selection (MAS) breeding approach to improve flooding-tolerant rice varieties in submergence-prone ecosystems. The Sub1 incorporated in rice varieties showed tolerance during flash flood, but not during stagnant conditions. Hence, gene pyramiding techniques can be applied to combine/stack multiple resistant genes for developing flood-resilient rice varieties for different types of flooding stresses. This review contains an update on the latest advances in understanding the molecular mechanisms, metabolic adaptions, and genetic factors governing rice flooding tolerance. A better understanding of molecular genetics and adaptation mechanisms that enhance flood-tolerant varieties under different flooding regimes was also discussed.
    Matched MeSH terms: Ecosystem
  2. Paterson RRM
    Environ Sci Pollut Res Int, 2021 May;28(17):21193-21203.
    PMID: 33410008 DOI: 10.1007/s11356-020-12072-5
    Palms are highly significant tropical plants. Oil palms produce palm oil, the basic commodity of a highly important industry. Climate change from greenhouse gasses is likely to decrease the ability of palms to survive, irrespective of them providing ecosystem services to communities. Little information about species survival in tropical regions under climate change is available and data on species migration under climate change is important. Palms are particularly significant in Africa: a palm oil industry already exists with Nigeria being the largest producer. Previous work using CLIMEX modelling indicated that Africa will have reduced suitable climate for oil palm in Africa. The current paper employs this modelling to assess how suitable climate for growing oil palm changed in Africa from current time to 2100. An increasing trend in suitable climate from west to east was observed indicating that refuges could be obtained along the African tropical belt. Most countries had reduced suitable climates but others had increased, with Uganda being particularly high. There may be a case for developing future oil palm plantations towards the east of Africa. The information may be usefully applied to other palms. However, it is crucial that any developments will fully adhere to environmental regulations. Future climate change will have severe consequences to oil palm cultivation but there may be scope for eastwards mitigation in Africa.
    Matched MeSH terms: Ecosystem
  3. Muthukumaravel K, Vasanthi N, Stalin A, Alam L, Santhanabharathi B, Musthafa MS
    Environ Sci Pollut Res Int, 2021 Mar;28(11):13752-13760.
    PMID: 33191468 DOI: 10.1007/s11356-020-11434-3
    Acute toxicity (96 h LC50) of phenol was analyzed in the cat fish Mystus vittatus in static bio-assay over a 96-h exposure period using probit method. The 24, 48, 72, and 96 h LC50 values (with 95% confidence limits) of phenol for fingerling catfish were found out as 13.98, 13.17, 12.62, and 12.21 mg/l respectively. Investigations pertaining to the histopathological sections have shown high degree of pathological lesions observed in various parts like gill, liver intestine, and kidney of the fish species. Analysis of gill section revealed observable changes in the experimental species such as fusion, malformation at the tip of secondary lamellae, vacuolation, hyperplasia, and epithelial damage. Exposure of phenol showed cytoplasmic vacuolation, tissue damage, and loss of hepatic cell wall in the liver of experimental organism. Lesions of tissue damage at the epithelial site, inflammation, and clumping of adjacent villi made of columnar epithelium have been observed in the intestine of fish, and also the excretory part of the fish kidney revealed various changes like glomerular atrophy, damage of Bowman's capsule, vacuolization, and degeneration of renal epithelium. The current study on histological changes observed in the experimental organisms has thrown light on the current scenario which poses threat and danger to the whole aquatic ecosystem, and this study plays a vital role in assessing the aquatic pollution.
    Matched MeSH terms: Ecosystem
  4. Lee HS, Arestis P, Chong SC, Yap S, Sia BK
    Environ Sci Pollut Res Int, 2022 Jan;29(1):1087-1105.
    PMID: 34341929 DOI: 10.1007/s11356-021-15699-0
    The rise of urbanisation in Belt and Road Initiative (BRI) countries that contribute to the disruption of the ecosystem, which would affect global sustainability, is a pressing concern. This study provides new evidence of the impact of urbanisation and institutional quality on greenhouse gas (GHG) emissions in the selected 48 BRI countries from the years 1984 to 2017. The models of this study are inferred by using panel regression model and panel quantile regression model to meet the objectives of our study as it contemplates unobserved country heterogeneity. From the panel regression model, the findings indicate that although urbanisation in BRI supports the 'life effect' hypothesis that could dampen the environment quality, this effect could be reduced through better institutional quality. Using the quantile regression method, this study concludes that one-size-fits-all strategies to reduce GHG emissions in countries with different GHG emissions levels are improbable to achieve success for all. Hence, GHG emissions control procedures should be adjusted differently across high-emission, middle-emission and low-emission countries. Based on these results, this study provides novel intuitions for policymakers to wisely plan the urbanisation blueprints to eradicate unplanned urbanisation and improve institutional quality in meeting pollution mitigation goals.
    Matched MeSH terms: Ecosystem
  5. Airiken M, Zhang F, Chan NW, Kung HT
    Environ Sci Pollut Res Int, 2022 Feb;29(8):12282-12299.
    PMID: 34564811 DOI: 10.1007/s11356-021-16579-3
    In the current context of rapid development and urbanization, land use and land cover (LULC) types have undergone unprecedented changes, globally and nationally, leading to significant effects on the surrounding ecological environment quality (EEQ). The urban agglomeration in North Slope of Tianshan (UANST) is in the core area of the Silk Road Economic Belt of China. This area has experienced rapid development and urbanization with equally rapid LULC changes which affect the EEQ. Hence, this study quantified and assessed the spatial-temporal changes of LULC on the UANST from 2001 to 2018 based on remote sensing analysis. Combining five remote sensing ecological factors (WET, NDVI, IBI, TVDI, LST) that met the pressure-state-response(PSR) framework, the spatial-temporal distribution characteristics of EEQ were evaluated by synthesizing a new Remote Sensing Ecological Index (RSEI), with the interaction between land use change and EEQ subsequently analyzed. The results showed that LULC change dominated EEQ change on the UANST: (1) From 2001 to 2018, the temporal and spatial pattern of the landscape on the UANST has undergone tremendous changes. The main types of LULC in the UANST are Barren land and Grassland. (2) During the study period, RSEI values in the study area were all lower than 0.5 and were at the [good] levels, reaching 0.31, 0.213, 0.362, and 0346, respectively. In terms of time and space, the overall EEQ on the UANST experienced three stages of decline-rise-decrease. (3) The estimated changes in RSEI were highly related to the changes of LULC. During the period 2001 to 2018, the RSEI value of cropland showed a trend of gradual increase. However, the rest of the LULC type's RSEI values behave differently at different times. As the UANST is the core area of Xinjiang's urbanization and economic development, understanding and balancing the relationship between LULC and EEQ in the context of urbanization is of practical application in the planning and realization of sustainable ecological, environmental, urban, and social development in the UANST.
    Matched MeSH terms: Ecosystem
  6. Burton AC, Beirne C, Gaynor KM, Sun C, Granados A, Allen ML, et al.
    Nat Ecol Evol, 2024 May;8(5):924-935.
    PMID: 38499871 DOI: 10.1038/s41559-024-02363-2
    Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human-wildlife interactions along gradients of human influence.
    Matched MeSH terms: Ecosystem
  7. Alam L, Zolkaply SZ, Sumaila UR, Rusydy I, Kutty AA, Bari MA, et al.
    Environ Sci Pollut Res Int, 2024 Jun;31(29):41355-41369.
    PMID: 37103711 DOI: 10.1007/s11356-023-27101-2
    Fish biodiversity in Malaysia is under pressure due to overexploitation, pollution, and climatic stressors. Nevertheless, the information on fish biodiversity and species vulnerability status is not well documented in the region. Therefore, a study on fish species composition and abundance in the Malacca Strait of Malaysia has been conducted for the purpose of monitoring biodiversity, determining the risk of species extinction, and identifying factors influencing biodiversity distribution. The sampling was conducted based on a random stratified sampling method from the three zones of sampling locations, i.e., estuary, mangrove, and open sea area of Tanjung Karang and Port Klang of Malacca Strait. Higher species diversity was recorded at Tanjung Karang coastal and mangrove areas (H' = 2.71; H' = 1.64) than Port Klang coastal and mangrove areas (H' = 1.50, H' = 0.29), an indication that the Port Klang area is comparatively more vulnerable. The study also explored sampling location, habitat, and IUCN red list as the influencing factors for fish biodiversity. Applying IUCN red list, this study identified one Endangered and one Vulnerable species with the forecasted increasing landing for both species. Our findings suggest the urgent need for the implementation of conservation measures as well as the continuous monitoring of fish biodiversity in the area.
    Matched MeSH terms: Ecosystem
  8. Al-Obaidi JR, Jamaludin AA, Rahman NA, Ahmad-Kamil EI
    Planta, 2024 Mar 29;259(5):103.
    PMID: 38551683 DOI: 10.1007/s00425-024-04378-2
    Heavy metal pollution caused by human activities is a serious threat to the environment and human health. Plants have evolved sophisticated defence systems to deal with heavy metal stress, with proteins and enzymes serving as critical intercepting agents for heavy metal toxicity reduction. Proteomics continues to be effective in identifying markers associated with stress response and metabolic processes. This review explores the complex interactions between heavy metal pollution and plant physiology, with an emphasis on proteomic and biotechnological perspectives. Over the last century, accelerated industrialization, agriculture activities, energy production, and urbanization have established a constant need for natural resources, resulting in environmental degradation. The widespread buildup of heavy metals in ecosystems as a result of human activity is especially concerning. Although some heavy metals are required by organisms in trace amounts, high concentrations pose serious risks to the ecosystem and human health. As immobile organisms, plants are directly exposed to heavy metal contamination, prompting the development of robust defence mechanisms. Proteomics has been used to understand how plants react to heavy metal stress. The development of proteomic techniques offers promising opportunities to improve plant tolerance to toxicity from heavy metals. Additionally, there is substantial scope for phytoremediation, a sustainable method that uses plants to extract, sequester, or eliminate contaminants in the context of changes in protein expression and total protein behaviour. Changes in proteins and enzymatic activities have been highlighted to illuminate the complex effects of heavy metal pollution on plant metabolism, and how proteomic research has revealed the plant's ability to mitigate heavy metal toxicity by intercepting vital nutrients, organic substances, and/or microorganisms.
    Matched MeSH terms: Ecosystem
  9. Lum JY, Chiu MC, Tseng SP, Scotty Yang CC, Lee CY
    J Econ Entomol, 2023 Apr 24;116(2):520-528.
    PMID: 36715608 DOI: 10.1093/jee/toad010
    The longlegged ant Anoplolepis gracilipes (Smith) is a highly invasive tramp ant species known for its deleterious effects on native ecosystems. While tramp ants are associated with human activity, information on how different intensities of human activity affect their distribution is limited. This study investigated how anthropogenic activities affected the distribution of A. gracilipes in Penang, a tropical island in northern peninsular Malaysia. Three study sites (Youth Park, Sungai Ara, and Bukit Jambul/Relau) were selected, containing four sub-locations corresponding to different levels of human activity (low, moderate, high, and very high), determined by the average number of passersby observed over 30 min. Baited index cards were placed at each sub-location to evaluate ant abundance and distribution. The results demonstrated that A. gracilipes worker abundance was highest in areas of moderate human activity, as opposed to areas with low and higher human activity. The low abundance of A. gracilipes in comparatively undisturbed localities may be attributed to unsuitable microclimate, lack of propagule pressure, and diminished honeydew availability. In contrast, its exclusion from more urbanized localities could be explained by high interspecific competition with other tramp species and the absence of preferred nesting sites.
    Matched MeSH terms: Ecosystem
  10. Huda N, Ullah S, Wahab RA, Lani MN, Daud NHA, Shariff AHM, et al.
    BMC Res Notes, 2023 Sep 12;16(1):211.
    PMID: 37700361 DOI: 10.1186/s13104-023-06495-9
    OBJECTIVES: Pollen is a useful tool for identifying the provenance and complex ecosystems surrounding honey production in Malaysian forests. As native key pollinators in Malaysia, Apis dorsata and Heterotrigona itama forage on various plant/pollen species to collect honey. This study aims to generate a dataset that uncovers the presence of these plant/pollen species and their relative abundance in the honey of A. dorsata and H. itama. The information gathered from this study can be used to determine the geographical and botanical origin and authenticity of the honey produced by these two species.

    RESULTS: Sequence data were obtained for both A. dorsata and H. itama. The raw sequence data for A. dorsata was 5 Mb, which was assembled into 5 contigs with a size of 6,098,728 bp, an N50 of 15,534, and a GC average of 57.42. Similarly, the raw sequence data for H. itama was 6.3 Mb, which was assembled into 11 contigs with a size of 7,642,048 bp, an N50 of 17,180, and a GC average of 55.38. In the honey sample of A. dorsata, we identified five different plant/pollen species, with only one of the five species exhibiting a relative abundance of less than 1%. For H. itama, we identified seven different plant/pollen species, with only three of the species exhibiting a relative abundance of less than 1%. All of the identified plant species were native to Peninsular Malaysia, especially the East Coast area of Terengganu.

    DATA DESCRIPTION: Our data offers valuable insights into honey's geographical and botanical origin and authenticity. Metagenomic studies could help identify the plant species that honeybees forage and provide preliminary data for researchers studying the biological development of A. dorsata and H. itama. The identification of various flowers from the eDNA of honey that are known for their medicinal properties could aid in regional honey with accurate product origin labeling, which is crucial for guaranteeing product authenticity to consumers.

    Matched MeSH terms: Ecosystem
  11. Liu H, Zheng Y, Zhu B, Tong Y, Xin W, Yang H, et al.
    Sci Adv, 2023 Jun 23;9(25):eadg4011.
    PMID: 37352347 DOI: 10.1126/sciadv.adg4011
    Marine-terrestrial transition represents an important aspect of organismal evolution that requires numerous morphological and genetic innovations and has been hypothesized to be caused by geological changes. We used talitrid crustaceans with marine-coastal-montane extant species at a global scale to investigate the marine origination and terrestrial adaptation. Using genomic data, we demonstrated that marine ancestors repeatedly colonized montane terrestrial habitats during the Oligocene to Miocene. Biological transitions were well correlated with plate collisions or volcanic island formation, and top-down cladogenesis was observed on the basis of a positive relationship between ancestral habitat elevation and divergence time for montane lineages. We detected convergent variations of convoluted gills and convergent evolution of SMC3 associated with montane transitions. Moreover, using CRISPR-Cas9 mutagenesis, we proposed that SMC3 potentially regulates the development of exites, such as talitrid gills. Our results provide a living model for understanding biological innovations and related genetic regulatory mechanisms associated with marine-terrestrial transitions.
    Matched MeSH terms: Ecosystem
  12. Ahmad T, Kumar N, Kumar A, Mubashir M, Bokhari A, Paswan BK, et al.
    Environ Res, 2024 Mar 15;245:117960.
    PMID: 38135098 DOI: 10.1016/j.envres.2023.117960
    Carbon capture technologies are becoming increasingly crucial in addressing global climate change issues by lowering CO2 emissions from industrial and power generation activities. Post-combustion carbon capture, which uses membranes instead of adsorbents, has emerged as one of promising and environmentally friendly approaches among these technologies. The operation of membrane technology is based on the premise of selectively separating CO2 from flue gas emissions. This provides a number of different benefits, including improved energy efficiency and decreased costs of operation. Because of its adaptability to changing conditions and its low impact on the surrounding ecosystem, it is an appealing choice for a diverse array of uses. However, there are still issues to be resolved, such as those pertaining to establishing a high selectivity, membrane degradation, and the costs of the necessary materials. In this article, we evaluate and explore the prospective applications and roles of membrane technologies to control climate change by post-combustion carbon capturing. The primary proposition suggests that the utilization of membrane-based carbon capture has the potential to make a substantial impact in mitigating CO2 emissions originating from industrial and power production activities. This is due to its heightened ability to selectively absorb carbon, better efficiency in energy consumption, and its flexibility to various applications. The forthcoming challenges and potential associated with the application of membranes in post-carbon capture are also discussed.
    Matched MeSH terms: Ecosystem
  13. Mehmood A, Khan FSA, Mubarak NM, Tan YH, Karri RR, Khalid M, et al.
    Environ Sci Pollut Res Int, 2021 Apr;28(16):19563-19588.
    PMID: 33651297 DOI: 10.1007/s11356-021-12589-3
    Numerous contaminants in huge amounts are discharged to the environment from various anthropogenic activities. Waterbodies are one of the major receivers of these contaminants. The contaminated water can pose serious threats to humans and animals, by distrubing the ecosystem. In treating the contaminated water, adsorption processes have attained significant maturity due to lower cost, easy operation and environmental friendliness. The adsorption process uses various adsorbent materials and some of emerging adsorbent materials include carbon- and polymer-based magnetic nanocomposites. These hybrid magnetic nanocomposites have attained extensive applications in water treatment technologies due to their magnetic properties as well as combination of unique characteristics of organic and inorganic elements. Carbon- and polymer-related magnetic nanocomposites are more adapted materials for the removal of various kinds of contaminants from waterbodies. These nanocomposites can be produced via different approaches such as filling, pulse-laser irradiation, ball milling, and electro-spinning. This comprehensive review is compiled by reviewing published work of last the latest recent 3 years. The review article extensively focuses on different approaches for producing various carbon- and polymer-based magnetic nanocomposites, their merits and demerits and applications for sustainable water purification. More specifically, use of carbon- and polymer-based magnetic nanocomposites for removal of heavy metal ions and dyes is discussed in detail, critically analyzed and compared with other technologies. In addition, commercial viability in terms of regeneration of adsorbents is also reviewed. Furthermore, the future challenges and prospects in employing magnetic nanocomposites for contaminant removal from various water sources are presented.
    Matched MeSH terms: Ecosystem
  14. Stark DJ, Vaughan IP, Ramirez Saldivar DA, Nathan SK, Goossens B
    PLoS One, 2017;12(3):e0174891.
    PMID: 28362872 DOI: 10.1371/journal.pone.0174891
    The development of GPS tags for tracking wildlife has revolutionised the study of home ranges, habitat use and behaviour. Concomitantly, there have been rapid developments in methods for estimating habitat use from GPS data. In combination, these changes can cause challenges in choosing the best methods for estimating home ranges. In primatology, this issue has received little attention, as there have been few GPS collar-based studies to date. However, as advancing technology is making collaring studies more feasible, there is a need for the analysis to advance alongside the technology. Here, using a high quality GPS collaring data set from 10 proboscis monkeys (Nasalis larvatus), we aimed to: 1) compare home range estimates from the most commonly used method in primatology, the grid-cell method, with three recent methods designed for large and/or temporally correlated GPS data sets; 2) evaluate how well these methods identify known physical barriers (e.g. rivers); and 3) test the robustness of the different methods to data containing either less frequent or random losses of GPS fixes. Biased random bridges had the best overall performance, combining a high level of agreement between the raw data and estimated utilisation distribution with a relatively low sensitivity to reduced fixed frequency or loss of data. It estimated the home range of proboscis monkeys to be 24-165 ha (mean 80.89 ha). The grid-cell method and approaches based on local convex hulls had some advantages including simplicity and excellent barrier identification, respectively, but lower overall performance. With the most suitable model, or combination of models, it is possible to understand more fully the patterns, causes, and potential consequences that disturbances could have on an animal, and accordingly be used to assist in the management and restoration of degraded landscapes.
    Matched MeSH terms: Ecosystem
  15. Ord TJ, Blazek K, White TE, Das I
    Proc Biol Sci, 2021 Jun 09;288(1952):20210706.
    PMID: 34102889 DOI: 10.1098/rspb.2021.0706
    Social animals are expected to face a trade-off between producing a signal that is detectible by mates and rivals, but not obvious to predators. This trade-off is fundamental for understanding the design of many animal signals, and is often the lens through which the evolution of alternative communication strategies is viewed. We have a reasonable working knowledge of how conspecifics detect signals under different conditions, but how predators exploit conspicuous communication of prey is complex and hard to predict. We quantified predation on 1566 robotic lizard prey that performed a conspicuous visual display, possessed a conspicuous ornament or remained cryptic. Attacks by free-ranging predators were consistent across two contrasting ecosystems and showed robotic prey that performed a conspicuous display were equally likely to be attacked as those that remained cryptic. Furthermore, predators avoided attacking robotic prey with a fixed, highly visible ornament that was novel at both locations. These data show that it is prey familiarity-not conspicuousness-that determine predation risk. These findings replicated across different predator-prey communities not only reveal how conspicuous signals might evolve in high predation environments, but could help resolve the paradox of aposematism and why some exotic species avoid predation when invading new areas.
    Matched MeSH terms: Ecosystem
  16. Wernli D, Søgaard Jørgensen P, Parmley EJ, Majowicz SE, Lambraki I, Carson CA, et al.
    Lancet Planet Health, 2023 Jul;7(7):e630-e637.
    PMID: 37438004 DOI: 10.1016/S2542-5196(23)00128-6
    Social-ecological systems conceptualise how social human systems and ecological natural systems are intertwined. In this Personal View, we define the scope and applicability of social-ecological resilience to antimicrobial resistance. Resilience to antimicrobial resistance corresponds to the capacity to maintain the societal benefits of antimicrobial use and One Health systems' performance in the face of the evolutionary behaviour of microorganisms in response to antimicrobial use. Social-ecological resilience provides an appropriate framework to make sense of the disruptive impacts resulting from the emergence and spread of antimicrobial resistance; capture the diversity of strategies needed to tackle antimicrobial resistance and to live with it; understand the conditions that underpin the success or failure of interventions; and appreciate the need for adaptive and coevolutionary governance. Overall, resilience thinking is essential to improve understanding of how human societies dynamically can cope with, adapt, and transform to the growing global challenge of antimicrobial resistance.
    Matched MeSH terms: Ecosystem
  17. Purnama, Farabi K, Runadi D, Kuncoro H, Harneti D, Nurlelasari, et al.
    Molecules, 2023 Jun 23;28(13).
    PMID: 37446608 DOI: 10.3390/molecules28134946
    The Aglaia genus, a member of the Meliaceae family, is generally recognized to include a number of secondary metabolite compounds with diverse structures and biological activities, including triterpenoids. Among the members of this genus, Aglaia cucullata has been reported to have unique properties and thrives exclusively in mangrove ecosystems. This plant is also known to contain various metabolites, such as flavaglines, bisamides, and diterpenoids, but there are limited reports on the isolation of triterpenoid compounds from its stem bark. Therefore, this research attempted to isolate and elucidate seven triterpenoids belonging to dammarane-type (1-7) from the stem bark of Aglaia cucullata. The isolated compounds included 20S,24S-epoxy-3α,25-dihydroxy-dammarane (1), dammaradienone (2), 20S-hydroxy-dammar-24-en-3-on (3), eichlerianic acid (4), (20S,24RS)-23,24-epoxy-24-methoxy-25,26,27-tris-nor dammar-3-one (5), 3α-acetyl-cabraleahydroxy lactone (6), and 3α-acetyl-20S,24S-epoxy-3α,25-dihydroxydammarane (7). Employing spectroscopic techniques, the chemical structures of the triterpenoids were identified using FTIR, NMR, and HRESITOF-MS. The cytotoxic activity of compounds 1-7 was tested with the PrestoBlue cell viability reagent against MCF-7 breast cancer, B16-F10 melanoma, and CV-1 normal kidney fibroblast cell lines. The results displayed that compound 5 had the highest level of bioactivity compared to the others. Furthermore, the IC50 values obtained were more than 100 μM, indicating the low potential of natural dammarane-type triterpenoids as anticancer agents. These findings provided opportunities for further studies aiming to increase their cytotoxic activities through semi-synthetic methods.
    Matched MeSH terms: Ecosystem
  18. Lim KP, Sun C, Yusoff S, Ding J, Loh KH, Li J, et al.
    Mar Pollut Bull, 2024 Dec;209(Pt A):117112.
    PMID: 39406069 DOI: 10.1016/j.marpolbul.2024.117112
    Microplastic contamination is an emerging concern in marine ecosystems, with limited knowledge on its impact on coral reefs, particularly in Malaysia. Surface waters were collected from several coral reef regions in Peninsular Malaysia by towing a plankton net behind the boat. Microplastics were detected at all sites, with a mean abundance of 0.344 ± 0.457 MP/m3. Perhentian Islands (0.683 ± 0.647 MP/m3) had significantly higher microplastic levels than Tioman Island (0.108 ± 0.063 MP/m3), likely due to oceanographic differences. Over half of the microplastics (55.7 %) were small microplastics (<1 mm), with the 0.05-0.5 mm size class being most abundant (29.2 %). Fragments and fibres dominated, and black, blue, and green were the prevalent colours. Polyethylene (PE), rayon (RY), chlorinated polyethylene (CPE), and polypropylene (PP) were the most common polymers. This study reveals the abundance and characteristics of microplastics, provides important data for further research on microplastics in coral reef ecosystem.
    Matched MeSH terms: Ecosystem
  19. Bosu S, Rajamohan N, Sagadevan S, Raut N
    Chemosphere, 2023 Dec;345:140471.
    PMID: 37871875 DOI: 10.1016/j.chemosphere.2023.140471
    The rapid consumption of metals and unorganized disposal have led to unprecedented increases in heavy metal ion concentrations in the ecosystem, which disrupts environmental homeostasis and results in agricultural biodiversity loss. Mitigation and remediation plans for heavy metal pollution are largely dependent on the discovery of cost-effective, biocompatible, specific, and robust detectors because conventional methods involve sophisticated electronics and sample preparation procedures. Carbon dots (CDs) have gained significant importance in sensing applications related to environmental sustainability. Fluorescence sensor applications have been enhanced by their distinctive spectral properties and the potential for developing efficient photonic devices. With the recent development of biomass-functionalized carbon dots, a wide spectrum of multivalent and bivalent transition metal ions responsible for water quality degradation can be detected with high efficiency and minimal toxicity. This review explores the various methods of manufacturing carbon dots and the biochemical mechanisms involved in metal detection using green carbon dots for sensing applications involving Cu (II), Fe (III), Hg (II), and Cr (VI) ions in aqueous systems. A detailed discussion of practical challenges and future recommendations is presented to identify feasible design routes.
    Matched MeSH terms: Ecosystem
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links