Displaying publications 381 - 400 of 443 in total

Abstract:
Sort:
  1. Yap NJ, Vythilingam I, Hoh BP, Goh XT, Muslim A, Ngui R, et al.
    Parasit Vectors, 2018 Dec 05;11(1):626.
    PMID: 30518419 DOI: 10.1186/s13071-018-3234-5
    BACKGROUND: The merozoite surface protein-1 (MSP-1) gene encodes for a leading malaria vaccine candidate antigen. However, its extensive polymorphic nature represents a major obstacle to the development of a protective vaccine. Previously, a pilot study was carried out to explore the sequence variation of the C-terminal 42 kDa fragment within P. knowlesi MSP-1 gene (PkMSP-142) based on 12 clinical samples; however, further study on an adequate sample size is vital in estimating the genetic diversity of the parasite population.

    METHODS: In the present study, we included a larger sample size of P. knowlesi (83 samples) covering eight states of Malaysia to determine the genetic polymorphism, natural selection and haplotype groups of the gene fragment coding PkMSP-142. The region flanking PkMSP-142 was amplified by PCR and directly sequenced. Genetic diversity, haplotype diversity, population genetic differentiation and natural selection were determined in order to study the polymorphic characteristic of PkMSP-142.

    RESULTS: A high level of genetic diversity (Hd = 0.970 ± 0.007; л = 0.01079 ± 0.00033) was observed among the 83 P. knowlesi samples, confirming the extensive genetic polymorphism exhibited among the P. knowlesi population found in Malaysia. A total of 18 distinct haplotypes with 17 amino acid changes were identified, whereby 15 were new haplotypes. High population differentiation values were observed within samples from Peninsular Malaysia and Malaysian Borneo. The 42 kDa fragments of P. knowlesi from Malaysian Borneo were found to be acting on balancing selection whilst purifying selection was suggested to act on isolates from Peninsular Malaysia. The separation of PkMSP-142 haplotypes into two main groups based on geographical separation has further supported the existence of two distinct P. knowlesi lineages.

    CONCLUSIONS: A high level of genetic diversity was observed among PkMSP-142 in Malaysia, whereby most of the polymorphisms were found within the 33 kDa region. Taken together, these data will be useful in order to understand the nature of P. knowlesi population in Malaysia as well as the design and development of a MSP-142 based knowlesi malaria vaccine.

    Matched MeSH terms: Polymorphism, Genetic
  2. Ariffin NM, Islahudin F, Kumolosasi E, Makmor-Bakry M
    Parasitol Res, 2019 Mar;118(3):1011-1018.
    PMID: 30706164 DOI: 10.1007/s00436-019-06210-3
    Eliminating the Plasmodium vivax malaria parasite infection remains challenging. One of the main problems is its capacity to form hypnozoites that potentially lead to recurrent infections. At present, primaquine is the only drug used for the management of hypnozoites. However, the effects of primaquine may differ from one individual to another. The aim of this work is to determine new measures to reduce P. vivax recurrence, through primaquine metabolism and host genetics. A genetic study of MAO-A, CYP2D6, CYP1A2 and CYP2C19 and their roles in primaquine metabolism was undertaken of healthy volunteers (n = 53). The elimination rate constant (Ke) and the metabolite-to-parent drug concentration ratio (Cm/Cp) were obtained to assess primaquine metabolism. Allelic and genotypic analysis showed that polymorphisms MAO-A (rs6323, 891G>T), CYP2D6 (rs1065852, 100C>T) and CYP2C19 (rs4244285, 19154G>A) significantly influenced primaquine metabolism. CYP1A2 (rs762551, -163C>A) did not influence primaquine metabolism. In haplotypic analysis, significant differences in Ke (p = 0.00) and Cm/Cp (p = 0.05) were observed between individuals with polymorphisms, GG-MAO-A (891G>T), CT-CYP2D6 (100C>T) and GG-CYP2C19 (19154G>A), and individuals with polymorphisms, TT-MAO-A (891G>T), TT-CYP2D6 (100C>T) and AA-CYP2C19 (19154G>A), as well as polymorphisms, GG-MAO-A (891G>T), TT-CYP2D6 (100C>T) and GA-CYP2C19 (19154G>A). Thus, individuals with CYP2D6 polymorphisms had slower primaquine metabolism activity. The potential significance of genetic roles in primaquine metabolism and exploration of these might help to further optimise the management of P. vivax infection.
    Matched MeSH terms: Polymorphism, Genetic
  3. Mandal T, Bairy LK, Sharma PSVN
    Eur J Clin Pharmacol, 2020 Jun;76(6):807-814.
    PMID: 32253447 DOI: 10.1007/s00228-020-02866-4
    PURPOSE: Ethnicity plays a key role in deciding the direction of the association between serotonin transporter gene polymorphisms and treatment response of selective serotonin reuptake inhibitors (SSRIs). The present study explored the association of 5HTTLPR and 5HTTLPR-rs25531 polymorphisms with the treatment response of escitalopram in South Indian patients with major depressive disorder.

    METHODS: A total of 148 depressive patients receiving escitalopram 10-20 mg/day were genotyped for 5HTTLPR and rs25531 polymorphisms. Clinical assessment was done at baseline and after 4, 8, and 12 weeks using the 17-item Hamilton Depression Rating Scale (HDRS-17), Montgomery-Asberg Depression Rating Scale (MADRS), and Clinical Global Impression Scale (CGI). At the end of week 12, patients were defined as responders and non-responders based on HDRS17 and MADRS scores. Chi-square test and logistic regression analysis were performed to investigate the genotypic influence on treatment response. Comparison of continuous variables among different groups was done using Student's t test or one-way ANOVA.

    RESULTS: Out of 148 study subjects, 65 (43.9%) were responders and 83 (56.08%) were non-responders. We observed a significant (p value

    Matched MeSH terms: Polymorphism, Genetic
  4. Chua YA, Abdullah WZ, Yusof Z, Gan SH
    Turk J Med Sci, 2015;45(4):913-8.
    PMID: 26422867
    BACKGROUND/AIM: VKORC1 and CYP2C9 genetic polymorphisms may not accurately predict warfarin dose requirements. We evaluated an existing warfarin dosing algorithm developed for Malaysian patients that was based only on VKORC1 and CYP2C9 genes.

    MATERIALS AND METHODS: Five Malay patients receiving warfarin maintenance therapy were investigated for their CYP2C9*2, CYP2C9*3, and VKORC1-1639G>A genotypes and their vitamin K-dependent (VKD) clotting factor activities. The records of their daily warfarin doses and international normalized ratio (INR) 2 years prior to and after the measurement of VKD clotting factors activities were acquired. The mean warfarin doses were compared with predicted warfarin doses calculated from a genotypic-based dosing model developed for Asians.

    RESULTS: A patient with the VKORC1-1639 GA genotype, who was supposed to have higher dose requirements, had a lower mean warfarin dose similar to those having the VKORC1-1639 AA genotype. This discrepancy may be due to the coadministration of celecoxib, which has the potential to decrease warfarins metabolism. Not all patients' predicted mean warfarin doses based on a previously developed dosing algorithm for Asians were similar to the actual mean warfarin dose, with the worst predicted dose being 54.34% higher than the required warfarin dose.

    CONCLUSION: Multiple clinical factors can significantly change the actual required dose from the predicted dose from time to time. The additions of other dynamic variables, especially INR, VKD clotting factors, and concomitant drug use, into the dosing model are important in order to improve its accuracy.

    Matched MeSH terms: Polymorphism, Genetic
  5. Amin AM, Sheau Chin L, Mohamed Noor DA, Mostafa H, Abdul Kader MASK, Kah Hay Y, et al.
    Thromb Res, 2017 10;158:22-24.
    PMID: 28802144 DOI: 10.1016/j.thromres.2017.07.032
    Matched MeSH terms: Polymorphism, Genetic
  6. Dong AN, Pan Y, Palanisamy UD, Yiap BC, Ahemad N, Ong CE
    Appl Biochem Biotechnol, 2018 Sep;186(1):132-144.
    PMID: 29524040 DOI: 10.1007/s12010-018-2728-0
    Genetic polymorphism of the cytochrome P450 (CYP) genes particularly affects CYP2D6 and CYP2C19 to a functionally relevant extent, and it is therefore crucial to elucidate the enzyme kinetic and molecular basis for altered catalytic activity of these allelic variants. This study explored the expression and function of the reported alleles CYP2D6*2, CYP2D6*10, CYP2D6*17, CYP2C19*23, CYP2C19*24, and CYP2C19*25 with respect to gene polymorphisms. Site-directed mutagenesis (SDM) was carried out to generate these six alleles. After DNA sequencing, the CYP2D6 and CYP2C19 wild types alongside with their alleles were each independently co-expressed with NADPH-CYP oxidoreductase (OxR) in Escherichia coli. The expressed proteins were analyzed using Western blotting, reduced carbon monoxide (CO) difference spectral scanning, and cytochrome c reductase assay. Results from Western blot revealed the presence of all CYP wild-type and allelic proteins in E. coli membrane fractions. The reduced CO difference spectra scanning presented the distinct peak of absorbance at 450 nm, and the cytochrome c reductase assay has confirmed that spectrally active OxR was expressed in each protein preparation. As a conclusion, the results obtained from this study have proven the CYP variants to be immunoreactive and spectrally active and are suitable for use to examine biotransformation and interaction mechanism of the enzymes.
    Matched MeSH terms: Polymorphism, Genetic
  7. Muthiah YD, Lee WL, Teh LK, Ong CE, Salleh MZ, Ismail R
    Clin Chim Acta, 2004 Nov;349(1-2):191-8.
    PMID: 15469873 DOI: 10.1016/j.cccn.2004.06.024
    BACKGROUND: Cytochrome P450 (CYP) 2C8 is a principle enzyme responsible for the metabolism of many clinically important drugs as well as endogenous compounds such as arachidonic acid. The enzyme is genetically polymorphic but a simple method is not available to study its genetic polymorphism. We developed and optimized a variant-specific PCR techniques to detect CYP2C8*2, CYP2C8*3 and CYP2C8*4.
    METHOD: Genomic DNA was extracted from blood using standard extraction methods. A two-step PCR method was developed to detect simultaneously three CYP2C8 variants. In the first PCR (PCR1), specific regions from exons 3, 5 and 8 of the CYP2C8 gene were amplified. The products were used as templates in parallel alleles-specific PCR (PCR2). This method was tested against DNA samples obtained from 57 healthy Malaysian volunteers.
    RESULT: The bands of interest were successfully amplified. This method showed specific and reproducible results when tested on healthy volunteers. DNA sequencing further confirmed genotype results obtained from current method.
    CONCLUSION: We have successfully developed and optimized a multiplex PCR method suitable for use in population studies of CYP2C8 polymorphism.
    Matched MeSH terms: Polymorphism, Genetic
  8. Yap SN, Phipps ME, Manivasagar M, Bosco JJ
    Immunol Lett, 1999 Jun 01;68(2-3):295-300.
    PMID: 10424435
    The neutrophil antigen (NA)1 and 2 is coded by two recognized allelic forms of Fc gamma receptor IIIB (FcgammaRIIIB). FcgammaRIIIb is a low affinity receptor and preferentially removes immune complexes from the circulation. Systemic lupus erythematosus (SLE) is an autoimmune and polygenic disorder characterized by accumulation of autoimmune complexes. The majority of SLE patients in our medical center are of Chinese ethnicity, followed by Malay and Indian. Recently, studies have focussed on the Fc receptors in different ethnic groups and their relation to SLE. We chose to study the gene distribution of this receptor in the Chinese and Malays population in Malaysia. We designed a polymerase chain reaction allele specific primers (PCR-ASP) method to distinguish the two allelic forms. Genomic DNA was isolated from the peripheral blood of 183 Chinese and 55 Malays SLE patients as well as 100 Chinese and 50 Malays healthy controls. Genotyping of Chinese SLE patients revealed that the gene frequencies for FcgammaRIIIB-NA1 and FcgammaRIIIB-NA2 were 0.648 and 0.347, while in the ethnically matched healthy controls they were 0.68 and 0.32, respectively. One out of the 183 Chinese SLE patients was identified as a NA-null due to the absence of PCR product for both alleles. The FcgammaRIIIB-NA1 and FcgammaRIIIB-NA2 allele frequencies for both the Malays SLE and healthy controls were 0.62 and 0.38.
    Matched MeSH terms: Polymorphism, Genetic
  9. Han JH, Cho JS, Ong JJY, Park JH, Nyunt MH, Sutanto E, et al.
    PLoS Negl Trop Dis, 2020 Jul;14(7):e0008202.
    PMID: 32645098 DOI: 10.1371/journal.pntd.0008202
    Plasmodium vivax is the most widespread and difficult to treat cause of human malaria. The development of vaccines against the blood stages of P. vivax remains a key objective for the control and elimination of vivax malaria. Erythrocyte binding-like (EBL) protein family members such as Duffy binding protein (PvDBP) are of critical importance to erythrocyte invasion and have been the major target for vivax malaria vaccine development. In this study, we focus on another member of EBL protein family, P. vivax erythrocyte binding protein (PvEBP). PvEBP was first identified in Cambodian (C127) field isolates and has subsequently been showed its preferences for binding reticulocytes which is directly inhibited by antibodies. We analysed PvEBP sequence from 316 vivax clinical isolates from eight countries including China (n = 4), Ethiopia (n = 24), Malaysia (n = 53), Myanmar (n = 10), Papua New Guinea (n = 16), Republic of Korea (n = 10), Thailand (n = 174), and Vietnam (n = 25). PvEBP gene exhibited four different phenotypic clusters based on the insertion/deletion (indels) variation. PvEBP-RII (179-479 aa.) showed highest polymorphism similar to other EBL family proteins in various Plasmodium species. Whereas even though PvEBP-RIII-V (480-690 aa.) was the most conserved domain, that showed strong neutral selection pressure for gene purifying with significant population expansion. Antigenicity of both of PvEBP-RII (16.1%) and PvEBP-RIII-V (21.5%) domains were comparatively lower than other P. vivax antigen which expected antigens associated with merozoite invasion. Total IgG recognition level of PvEBP-RII was stronger than PvEBP-RIII-V domain, whereas total IgG inducing level was stronger in PvEBP-RIII-V domain. These results suggest that PvEBP-RII is mainly recognized by natural IgG for innate protection, whereas PvEBP-RIII-V stimulates IgG production activity by B-cell for acquired immunity. Overall, the low antigenicity of both regions in patients with vivax malaria likely reflects genetic polymorphism for strong positive selection in PvEBP-RII and purifying selection in PvEBP-RIII-V domain. These observations pose challenging questions to the selection of EBP and point out the importance of immune pressure and polymorphism required for inclusion of PvEBP as a vaccine candidate.
    Matched MeSH terms: Polymorphism, Genetic
  10. Mohd Yusoff N, Shirakawa T, Nishiyama K, Choo KE, Isa MN, Matsuo M
    PMID: 15906717
    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked red blood cell enzymopathy common in malaria endemic areas. Individuals affected by this disease show a wide variety of clinical signs of acute hemolytic anemia. Mutations of the G6PD gene in the Malay population with G6PD deficiency in Kelantan, a state in North East Malaysia were studied. Ninety-three individuals with G6PD deficiency were subjected to mutation analysis of the G6PD gene using polymerase chain reaction based techniques of multiplex PCR. Of the ninety-three DNA samples studied, molecular defects were identified in 80 cases (86%). Variants were heterogeneous - 28.7% were found to have a G to A nucleotide change at nucleotide 871 of the G6PD gene (G871A), corresponding to G6PD Viangchan. The other major mutations were G6PD Mediterranean, G6PD Vanua Lava, G6PD Coimbra, G6PD Kaiping, G6PD Orissa, G6PD Mahidol, G6PD Canton and G6PD Chatham. These results showed that there are heterogeneous mutations of the G6PD gene associated with G6PD deficiency and that G6PD Viangchan and G6PD Mediterranean account for the main variants in G6PD deficiency among the Malay population in Malaysia.
    Matched MeSH terms: Polymorphism, Genetic
  11. Harahap NI, Takeuchi A, Yusoff S, Tominaga K, Okinaga T, Kitai Y, et al.
    Brain Dev, 2015 Aug;37(7):669-76.
    PMID: 25459970 DOI: 10.1016/j.braindev.2014.10.006
    More than 90% of spinal muscular atrophy (SMA) patients show homozygous deletion of SMN1 (survival motor neuron 1). They retain SMN2, a highly homologous gene to SMN1, which may partially compensate for deletion of SMN1. Although the promoter sequences of these two genes are almost identical, a GCC insertion polymorphism has been identified at c.-320_-321 in the SMN1 promoter. We have also found this insertion polymorphism in an SMN2 promoter in an SMA patient (Patient A) who has SMA type 2/3.
    Matched MeSH terms: Polymorphism, Genetic
  12. Chu WC, Aziz AF, Nordin AJ, Cheah YK
    Clin Appl Thromb Hemost, 2016 Sep;22(6):581-8.
    PMID: 25667236 DOI: 10.1177/1076029615571628
    Genetic variants of cholesteryl ester transfer protein (CETP) and endothelial nitric oxide synthase (eNOS) influence high-density lipoprotein cholesterol (HDL-C) metabolism and nitric oxide (NO) synthesis, respectively, and might increase the risk of coronary artery disease (CAD). This study is to investigate the relationship between genetic polymorphisms and the risk of CAD and to evaluate their potential interactions. A total of 237 patients with CAD and 101 controls were genotyped. The association of the polymorphism with the risk of CAD varied among the ethnic groups. Moreover, the concomitant presence of both CETP B1 and eNOS 4a alleles significantly increased the risk of CAD in the Malay group (OR = 33.8, P < .001) and the Indian group (OR = 10.9, P = .031) but not in the Chinese group. This study has identified a novel ethnic-specific gene-gene interaction and suggested that the combination of CETP B1 allele and eNOS 4a allele significantly increases the risk of CAD in Malays and Indians.
    Matched MeSH terms: Polymorphism, Genetic
  13. Castaño-Rodríguez N, Kaakoush NO, Goh KL, Fock KM, Mitchell HM
    Helicobacter, 2015 Oct;20(5):353-69.
    PMID: 25664588 DOI: 10.1111/hel.12211
    Autophagy, a degradation pathway in which cytoplasmic content is engulfed and degraded by lysosomal hydrolases, plays a pivotal role in infection and inflammation. Given that defects in autophagy lead to increased susceptibility to infection, we investigated the role of autophagy in Helicobacter pylori-related gastric cancer (GC).
    Matched MeSH terms: Polymorphism, Genetic
  14. Castaño-Rodríguez N, Kaakoush NO, Goh KL, Fock KM, Mitchell HM
    PLoS One, 2014;9(6):e98899.
    PMID: 24901306 DOI: 10.1371/journal.pone.0098899
    Currently, it is well established that cancer arises in chronically inflamed tissue. A number of NOD-like receptors (NLRs) form inflammasomes, intracellular multiprotein complexes critical for generating mature pro-inflammatory cytokines (IL-1β and IL-18). As chronic inflammation of the gastric mucosa is a consequence of Helicobacter pylori infection, we investigated the role of genetic polymorphisms and expression of genes involved in the NLR signalling pathway in H. pylori infection and related gastric cancer (GC).
    Matched MeSH terms: Polymorphism, Genetic
  15. Mungthin M, Intanakom S, Suwandittakul N, Suida P, Amsakul S, Sitthichot N, et al.
    Malar J, 2014;13:117.
    PMID: 24670242 DOI: 10.1186/1475-2875-13-117
    Drug resistance in Plasmodium falciparum is a major problem in malaria control especially along the Thai-Myanmar and Thai-Cambodia borders. To date, a few molecular markers have been identified for anti-malarial resistance in P. falciparum, including the P. falciparum chloroquine resistance transporter (pfcrt) and the P. falciparum multidrug resistance 1 (pfmdr1). However no information is available regarding the distribution pattern of these gene polymorphisms in the parasites from the Thai-Malaysia border. This study was conducted to compare the distribution pattern of the pfcrt and pfmdr1 polymorphisms in the parasites from the lower southern provinces, Thai-Malaysia border and the upper southern provinces, Thai-Myanmar border. In addition, in vitro sensitivities of anti-malarial drugs including chloroquine, mefloquine, quinine, and artesunate were determined.
    Matched MeSH terms: Polymorphism, Genetic
  16. Roffeei SN, Reynolds GP, Zainal NZ, Said MA, Hatim A, Aida SA, et al.
    Hum Psychopharmacol, 2014 Jan;29(1):38-45.
    PMID: 24424705 DOI: 10.1002/hup.2366
    Various genetic polymorphisms have been reported to be associated with antipsychotic-induced weight gain. In this study, we aimed to determine whether risk polymorphisms in 12 candidate genes are associated with reduction in body mass index (BMI) of patients following switching of antipsychotics to aripiprazole or ziprasidone.
    Matched MeSH terms: Polymorphism, Genetic
  17. Mohd Suzairi MS, Tan SC, Ahmad Aizat AA, Mohd Aminudin M, Siti Nurfatimah MS, Andee ZD, et al.
    Cancer Epidemiol, 2013 Oct;37(5):634-8.
    PMID: 23806437 DOI: 10.1016/j.canep.2013.05.007
    To investigate the allele and genotype frequencies of NFKB1 -94 ins/del ATTG (rs28720239) polymorphism and to evaluate the association between the polymorphism and colorectal cancer (CRC) risk in Malaysian population.
    Matched MeSH terms: Polymorphism, Genetic
  18. Abdullah NR, Norahmad NA, Jelip J, Sulaiman LH, Mohd Sidek H, Ismail Z, et al.
    Malar J, 2013;12:198.
    PMID: 23758930 DOI: 10.1186/1475-2875-12-198
    Sulphadoxine-pyrimethamine (SP) has been in use for the treatment of uncomplicated falciparum malaria in Malaysia since the 1970s and is still widely employed in spite of widespread clinical resistance. Resistance to SP is known to be mediated by mutations in the pfdhfr and pfdhps genes. The aim of the present study was to investigate the distribution of pfdhfr and pfdhps gene polymorphism in Plasmodium falciparum field isolates from Kalabakan, Sabah, in northern Borneo.
    Matched MeSH terms: Polymorphism, Genetic
  19. Sim MS, Hatim A, Reynolds GP, Mohamed Z
    Pharmacogenomics, 2013 Apr;14(5):505-14.
    PMID: 23556448 DOI: 10.2217/pgs.13.25
    FAAH is a membrane enzyme that terminates the activity of a large class of endogenous signaling lipids. Recent studies suggest that the FAAH Pro129Thr polymorphism is a common mutation in the FAAH gene that is significantly associated with drug-addictive traits. This study investigated the association of the Pro129Thr polymorphism of the FAAH gene with methamphetamine dependence, methamphetamine-induced psychosis, manic episodes and panic disorder in a Malaysian population.
    Matched MeSH terms: Polymorphism, Genetic
  20. Haerian BS, Baum L, Tan HJ, Kwan P, Raymond AA, Saruwatari J, et al.
    Pharmacogenomics, 2012 Oct;13(13):1477-85.
    PMID: 23057548 DOI: 10.2217/pgs.12.127
    Approximately 30% of epilepsy patients do not response to antiepileptic drugs (AEDs). The functional SCN1A IVS5N+5 polymorphism may play a role in response to some AEDs. The purpose of this study was to examine this hypothesis in a cohort study of Malaysian and Hong Kong Chinese epilepsy patients on sodium valproate (VPA) monotherapy and in a meta-analysis.
    Matched MeSH terms: Polymorphism, Genetic
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links