MATERIALS AND METHODS: Matured, healthy and disease-free leaves of Eucalyptus globulus were collected. The leaves were washed under tap water and finally dried in an oven at a temperature of 45°C for 48 hours. The dried plants were ground in an electric blender to make them into a powder. The powder was mixed with 100% ethanol and kept it inside a shaker overnight at 35°C. The mixture was centrifuged for 10 minutes at 2,500 rpm. Three different concentrations (10%, 50%, and 100% v/v) were used as antibacterial agents. Chlorhexidine (0.2%) was considered as positive control and dimethyl formamide was considered as negative control against P. gingivalis and A. actinomycetemcomitans. The disc diffusion method was used to determine the extract's antibacterial activity against the test organisms. A digital Vernier caliper was used to measure the diameter of antibacterial activity showing the zone of inhibition in millimeters.
RESULTS: Eucalyptus globulus with 100% concentration showed a maximum zone of inhibition against A. actinomycetemcomitans and P. gingivalis (5.38 ± 0.32 mm, 4.82 ± 0.11 mm) followed by 50% and 10% accordingly. The negative control of dimethyl formamide showed a zone of inhibition of 0.48 ± 0.96 mm and 0.63 ± 0.20 mm against A. actinomycetemcomitans and P. gingivalis. The positive control of 0.2% chlorhexidine showed a zone of inhibition of 8.46 ± 1.02 mm and 7.18 ± 0.54 mm against A. actinomycetemcomitans and P. gingivalis. The ANOVA test showed a highly significant antibacterial efficacy in 0.2% chlorhexidine and 100% concentration Eucalyptus globulus.
CONCLUSION: A significant maximum zone of inhibition against A. actinomycetemcomitans and P. gingivalis was showed by 100% concentration of Eucalyptus globulus.
CLINICAL SIGNIFICANCE: Other than the systemic diseases treatment, Eucalyptus globulus also serves as an effective promising alternative to antibiotics in the prevention of oral infections because of the natural phytochemicals existing in them.
OBJECTIVE: The study aimed to investigate the effect of African walnuts (Tetracarpidium conophorum) on lipids storage and the regulatory enzymes of hepatic lipid metabolism in obese rats.
METHODS: Nuts were extracted in ethanol (WE) and further separated to obtain the ethyl-acetate fraction (ET) and the residue (RES). These were administered orally to 3 groups of monosodium glutamate- obese rats (n = 6), respectively, for 6 weeks. Other groups in the study were: normal (NC), obese control (OC) and standard control (SC) which received orlistat. Hepatic total lipids, total phospholipids, triacylglycerol (TG), total cholesterol (TCHOL), 3-hydroxyl-3-methylglutaryl-CoA (HMG-CoA) reductase and paraoxonase were studied.
RESULTS: Total lipids, TG and TCHOL which increased in OC compared to NC group, decreased. HMG-CoA reductase activity decreased in the 3 study groups relative to OC. Paraoxonase activity which decreased in OC was up-regulated, while the magnitude of hepatic cholesterol decreased from 94.32 % in OC to 52.19, 65.43 and 47.04 % with WE, ET and RES, respectively. Flavonoids, alkaloids, glycosides, tannins and saponins were detected in the nut. GC-MS analysis revealed 16, 18 and 10 volatile components in WE, ET and RES, respectively. Unsaturated fatty acids (linolenic acids: 33.33, 47.95 and 50.93 %, and α-linolenic acids: 25, 19.66 and 26.63 %) in WE, ET and RES, respectively, are the most abundant, and likely to be responsible for the observed activity.
CONCLUSION: African walnuts can prevent hepatic lipid accumulation through reciprocal actions on HMG-CoA reductase and paraoxonase in obesity.
METHODS: Crude Eurycoma longifolia extract was chromatographed into a DHY-enriched extract (DHY-F) and an EN-enriched extract (EN-F). Male Sprague-Dawley rats were administered intravenously and orally with both extracts and their plasma levels of both quassinoids were determined. The extracts were then tested for their spermatogenesis augmentation ability in normal rats and an andrographolide-induced oligospermia model.
KEY FINDINGS: Chromatographic enrichment resulted in a 28-fold increase of DHY in DHY-F and a 5-fold increase of EN in EN-F compared with non-chromatographed crude extracts. DHY showed better oral bioavailability (1.04 ± 0.58%) than EN (0.31 ± 0.19%). At 5 mg/kg, EN exhibited higher efficacy in spermatogenesis enhancement in normal rats and restoration of oligospermia to normal sperm profile versus DHY.
CONCLUSIONS: Despite the better pharmacokinetic profile of DHY, EN remains the main chemical contributor to plant bioactivity. DHY-F and EN-F represent improvements in developing Eurycoma longifolia as a potential phytomedicine for male infertility particularly oligospermia.
METHODS: The Areca catechu nut collected from Ipoh, Perak, Malaysia was grounded into powder and used for Soxhlet extraction. The chemical analysis of the extracts and their structures were identified using the GCMS-QP2010 Ultra (Shimadzu) system. National Institute of Standards and Technology (NIST) Chemistry WebBook, Standard Reference Database 69 (https://webbook.nist.gov/chemistry/) and PubChem (https://pubchem.ncbi.nlm.nih.gov/), the two databases used to retrieve the synonyms, molecular formula, molecular weight, and 2-dimensional (2D) structure of chemical compounds. Next, following WHO procedures for larval bioassays, the extracts were used to asses larvicidal activity against early 4th instar larvae of Aedes aegypti and Aedes albopictus.
RESULTS: The larvicidal activities were observed against early 4th stage larvae with different concentrations in the range from 200 mg/L to 1600 mg/L. The LC50 and LC95 of Aedes aegypti were 621 mg/L and 2264 mg/L respectively; whereas the LC50 and LC95 of Aedes albopictus were 636 mg/L and 2268 mg/L respectively. Mortality was not observed in the non-target organism test. The analysis using gas chromatography and mass spectrometer recovered several chemical compounds such as Arecaidine, Dodecanoic acid, Methyl tetradecanoate, Tetradecanoic acid , and n-Hexadecanoic acid bioactive components. These chemical constituents were used as additive formulations in pesticides, pest control, insect repellent, and insecticidal agents.
CONCLUSIONS: Our study showed significant outcomes from the extract of Areca catechu nut and it deserves further investigation in relation to chemical components and larvicidal actions between different species of Aedes mosquitoes. Even though all these findings are fundamental, it may have some interesting potentials to be developed as natural bio-larvicidal products.