METHODS: A modified Students Motivation towards Science Learning (SMTSL) was used to assess the digital learning usage and learning motivation among 150 UKM and 147 SUMS medical students throughout Year 1 to 5.
RESULTS: The frequency of digital learning usage and learning motivation among UKM medical students was significantly higher as compared to SUMS (p
METHODS: A gender-matched case-control study was conducted in the largest public sector cardiac hospital of Pakistan, and the data of 460 subjects were collected. The dataset comprised of eight nonclinical features. Four supervised ML algorithms were used to train and test the models to predict the CVDs status by considering traditional logistic regression (LR) as the baseline model. The models were validated through the train-test split (70:30) and tenfold cross-validation approaches.
RESULTS: Random forest (RF), a nonlinear ML algorithm, performed better than other ML algorithms and LR. The area under the curve (AUC) of RF was 0.851 and 0.853 in the train-test split and tenfold cross-validation approach, respectively. The nonclinical features yielded an admissible accuracy (minimum 71%) through the LR and ML models, exhibiting its predictive capability in risk estimation.
CONCLUSION: The satisfactory performance of nonclinical features reveals that these features and flexible computational methodologies can reinforce the existing risk prediction models for better healthcare services.
OBJECTIVE: This paper presents a machine learning-based approach for the automatic classification of regular and irregular capnogram segments.
METHODS: Herein, we proposed four time- and two frequency-domain features experimented with the support vector machine classifier through ten-fold cross-validation. MATLAB simulation was conducted on 100 regular and 100 irregular 15 s capnogram segments. Analysis of variance was performed to investigate the significance of the proposed features. Pearson's correlation was utilized to select the relatively most substantial ones, namely variance and the area under normalized magnitude spectrum. Classification performance, using these features, was evaluated against two feature sets in which either time- or frequency-domain features only were employed.
RESULTS: Results showed a classification accuracy of 86.5%, which outperformed the other cases by an average of 5.5%. The achieved specificity, sensitivity, and precision were 84%, 89% and 86.51%, respectively. The average execution time for feature extraction and classification per segment is only 36 ms.
CONCLUSION: The proposed approach can be integrated with capnography devices for real-time capnogram-based respiratory assessment. However, further research is recommended to enhance the classification performance.