Displaying publications 21 - 40 of 73 in total

Abstract:
Sort:
  1. Chong TL, Matsufuji Y, Hassan MN
    Waste Manag, 2005;25(7):702-11.
    PMID: 16009304
    Most of the existing solid waste landfill sites in developing countries are practicing either open dumping or controlled dumping. Proper sanitary landfill concepts are not fully implemented due to technological and financial constraints. Implementation of a fully engineered sanitary landfill is necessary and a more economically feasible landfill design is crucial, particularly for developing countries. This study was carried out by focusing on the economics from the development of a new landfill site within a natural clay area with no cost of synthetic liner up to 10 years after its closure by using the Fukuoka method semi-aerobic landfill system. The findings of the study show that for the development of a 15-ha landfill site in Malaysia with an estimated volume of 2,000,000 m(3), the capital investment required was about US 1,312,895 dollars, or about US 0.84 dollars/tonne of waste. Assuming that the lifespan of the landfill is 20 years, the total cost of operation was about US 11,132,536 dollars or US 7.15 dollars/tonne of waste. The closure cost of the landfill was estimated to be US 1,385,526 dollars or US 0.89 dollars/tonne of waste. Therefore, the total cost required to dispose of a tonne of waste at the semi-aerobic landfill was estimated to be US 8.89 dollars. By considering an average tipping fee of about US 7.89 dollars/tonne of waste in Malaysia in the first year, and an annual increase of 3% to about US 13.84 dollars in year-20, the overall system recorded a positive revenue of US 1,734,749 dollars. This is important information for the effort of privatisation of landfill sites in Malaysia, as well as in other developing countries, in order to secure efficient and effective landfill development and management.
    Matched MeSH terms: Refuse Disposal/methods*
  2. Sommer SG, Mathanpaal G, Dass GT
    Environ Technol, 2005 Mar;26(3):303-12.
    PMID: 15881027
    On commercial pig production farms in South East (SE) Asia, the liquid effluent is often discharged into rivers. The discharge is a hazard to the environment and to the health of people using water from the river either for consumption or for irrigation. Therefore, a simple percolation biofilter for treatment of the liquid effluent was developed. Pig slurry was treated in test-biofilters packed with different biomass for the purpose of selecting the most efficient material, thereafter the efficiency of the biofilter was examined at farm scale with demo biofilters using the most efficient material. The effect of using "Effective Microorganisms" (EM) added to slurry that was treated with biofilter material mixed with Glenor KR+ was examined. Slurry treatment in the test-biofilters indicated that rice straw was better than coconut husks, wood shavings, rattan strips and oil palm fronds in reducing BOD. Addition of EM and Glenor KR+ to slurry and biofilter material, respectively, had no effect on the temperature of the biofilter material or on the concentrations of organic and inorganic components of the treated slurry. The BOD of slurry treated in test biofilters is reduced to between 80 and 637 mg O2 I(-1) and in the demo biofilter to between 3094 and 3376 mg O2 l(-1). The concentration of BOD in the effluent is related to the BOD in the slurry being treated and the BOD concentration in slurry treated in test biofilters was lower than BOD of slurry treated in demo biofilters. The demo biofilter can reduce BOD to between 52 an 56% of the original value, and TSS, COD (chemical oxygen demand) and ammonium (NH4+) to 41-55% of the original slurry. The treated effluent could not meet the standards for discharge to rivers. The composted biofilter material has a high content of nitrogen and phosphorus; consequently, the fertilizer value of the compost is high. The investments costs were 123 US dollar per SPP which has to be reduced if this method should be a treatment option in practise.
    Matched MeSH terms: Refuse Disposal/methods*
  3. Hannan MA, Abdulla Al Mamun M, Hussain A, Basri H, Begum RA
    Waste Manag, 2015 Sep;43:509-23.
    PMID: 26072186 DOI: 10.1016/j.wasman.2015.05.033
    In the backdrop of prompt advancement, information and communication technology (ICT) has become an inevitable part to plan and design of modern solid waste management (SWM) systems. This study presents a critical review of the existing ICTs and their usage in SWM systems to unfold the issues and challenges towards using integrated technologies based system. To plan, monitor, collect and manage solid waste, the ICTs are divided into four categories such as spatial technologies, identification technologies, data acquisition technologies and data communication technologies. The ICT based SWM systems classified in this paper are based on the first three technologies while the forth one is employed by almost every systems. This review may guide the reader about the basics of available ICTs and their application in SWM to facilitate the search for planning and design of a sustainable new system.
    Matched MeSH terms: Refuse Disposal/methods*
  4. Uriarte FA
    Toxicol Ind Health, 1991 Sep-Nov;7(5-6):229-49.
    PMID: 1780863
    Matched MeSH terms: Refuse Disposal/methods*
  5. Muhammad Nasir I, Mohd Ghazi TI, Omar R
    Appl Microbiol Biotechnol, 2012 Jul;95(2):321-9.
    PMID: 22622840 DOI: 10.1007/s00253-012-4152-7
    Anaerobic digestion treatments have often been used for biological stabilization of solid wastes. These treatment processes generate biogas which can be used as a renewable energy sources. Recently, anaerobic digestion of solid wastes has attracted more interest because of current environmental problems, most especially those concerned with global warming. Thus, laboratory-scale research on this area has increased significantly. In this review paper, the summary of the most recent research activities covering production of biogas from solid wastes according to its origin via various anaerobic technologies was presented.
    Matched MeSH terms: Refuse Disposal/methods*
  6. Kamaruddin MA, Yusoff MS, Rui LM, Isa AM, Zawawi MH, Alrozi R
    Environ Sci Pollut Res Int, 2017 Dec;24(35):26988-27020.
    PMID: 29067615 DOI: 10.1007/s11356-017-0303-9
    Currently, generation of solid waste per capita in Malaysia is about 1.1 kg/day. Over 26,500 t of solid waste is disposed almost solely through 166 operating landfills in the country every day. Despite the availability of other disposal methods, landfill is the most widely accepted and prevalent method for municipal solid waste (MSW) disposal in developing countries, including Malaysia. This is mainly ascribed to its inherent forte in terms cost saving and simpler operational mechanism. However, there is a downside. Environmental pollution caused by the landfill leachate has been one of the typical dilemmas of landfilling method. Leachate is the liquid produced when water percolates through solid waste and contains dissolved or suspended materials from various disposed materials and biodecomposition processes. It is often a high-strength wastewater with extreme pH, chemical oxygen demand (COD), biochemical oxygen demand (BOD), inorganic salts and toxicity. Its composition differs over the time and space within a particular landfill, influenced by a broad spectrum of factors, namely waste composition, landfilling practice (solid waste contouring and compacting), local climatic conditions, landfill's physico-chemical conditions, biogeochemistry and landfill age. This paper summarises an overview of landfill operation and leachate treatment availability reported in literature: a broad spectrum of landfill management opportunity, leachate parameter discussions and the way forward of landfill leachate treatment applicability.
    Matched MeSH terms: Refuse Disposal/methods*
  7. Jensen JH, Saremi S, Jimenez C, Hadjioannou L
    Mar Pollut Bull, 2015 Dec 15;101(1):61-68.
    PMID: 26597564 DOI: 10.1016/j.marpolbul.2015.11.023
    The commonly adopted method of dumping dredge spoil at sea using split-hull barges leads to considerable sediment loss to the water column and a subsequent dispersion of fine material that can pose a risk to sensitive "downstream" habitats such as coral reefs. Containing sediment loads using stitched closed geotextile bags is practiced for minimizing loss of contaminated sediment, but is expensive in terms of operational efficiency. Following promising observations from initial laboratory trials, the plunging of partially shielded sediment loads, released on open sea, was studied. The partial shielding was achieved with rigid, open containers as well as flexible, open bags. The loss of sediment from these modes of shielding was measured, and it was observed that even limited and unstitched shielding can be effective in debilitating the entrainment of water into the descending load. In particular, long-sleeved flexible bags practically self-eliminated the exposure of the load and thus losses.
    Matched MeSH terms: Refuse Disposal/methods*
  8. Hassana SR, Zwaina HM, Zamana NQ, Dahlanb I
    Environ Technol, 2014 Jan-Feb;35(1-4):294-9.
    PMID: 24600868
    Start-up period is considered to be the most unstable and difficult stage in anaerobic process and usually takes a long time due to slow-degree adaptation of anaerobic microorganisms. In order to achieve a shorter start-up period, a novel modified anaerobic baffled reactor (MABR) has been developed in this study, where each modified baffle has its own characteristics (form/shape) to facilitate a treatment ofrecycled paper mill effluent (RPME). The results ofphysico-chemical characteristics showed that effluent from recycled paper mill consisted of 4328mgL-1 chemical oxygen demand (COD), 669mg L-1 biochemical oxygen demand and 501mg L-1 volatile fatty acid. It also consisted of variety of heavy metals such as zinc, magnesium, iron and nickel at concentrations of 1.39, 12.19, 2.39 and 0.72 mgL-1, respectively. Performance of MABR during the start-up period showed that methane production reached 34.7% with COD removal of 85% at steady state. The result indicates that MABR was successfully operated during the start-up period in treating RPME within a period of less than 30 days.
    Matched MeSH terms: Refuse Disposal/methods
  9. Alshelmani MI, Loh TC, Foo HL, Lau WH, Sazili AQ
    ScientificWorldJournal, 2013;2013:689235.
    PMID: 24319380 DOI: 10.1155/2013/689235
    Nine aerobic cellulolytic bacterial cultures were obtained from the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Culture (DSMZ) and the American Type Culture Collection (ATCC). The objectives of this study were to characterize the cellulolytic bacteria and to determine the optimum moisture ratio required for solid state fermentation (SSF) of palm kernel cake (PKC). The bacteria cultures were grown on reconstituted nutrient broth, incubated at 30°C and agitated at 200 rpm. Carboxymethyl cellulase, xylanase, and mannanase activities were determined using different substrates and after SSF of PKC. The SSF was conducted for 4 and 7 days with inoculum size of 10% (v/w) on different PKC concentration-to-moisture ratios: 1 : 0.2, 1 : 0.3, 1 : 0.4, and 1 : 0.5. Results showed that Bacillus amyloliquefaciens 1067 DSMZ, Bacillus megaterium 9885 ATCC, Paenibacillus curdlanolyticus 10248 DSMZ, and Paenibacillus polymyxa 842 ATCC produced higher enzyme activities as compared to other bacterial cultures grown on different substrates. The cultures mentioned above also produced higher enzyme activities when they were incubated under SSF using PKC as a substrate in different PKC-to-moisture ratios after 4 days of incubation, indicating that these cellulolytic bacteria can be used to degrade and improve the nutrient quality of PKC.
    Matched MeSH terms: Refuse Disposal/methods*
  10. Islam MS, Hannan MA, Basri H, Hussain A, Arebey M
    Waste Manag, 2014 Feb;34(2):281-90.
    PMID: 24238802 DOI: 10.1016/j.wasman.2013.10.030
    The increasing requirement for Solid Waste Management (SWM) has become a significant challenge for municipal authorities. A number of integrated systems and methods have introduced to overcome this challenge. Many researchers have aimed to develop an ideal SWM system, including approaches involving software-based routing, Geographic Information Systems (GIS), Radio-frequency Identification (RFID), or sensor intelligent bins. Image processing solutions for the Solid Waste (SW) collection have also been developed; however, during capturing the bin image, it is challenging to position the camera for getting a bin area centralized image. As yet, there is no ideal system which can correctly estimate the amount of SW. This paper briefly discusses an efficient image processing solution to overcome these problems. Dynamic Time Warping (DTW) was used for detecting and cropping the bin area and Gabor wavelet (GW) was introduced for feature extraction of the waste bin image. Image features were used to train the classifier. A Multi-Layer Perceptron (MLP) classifier was used to classify the waste bin level and estimate the amount of waste inside the bin. The area under the Receiver Operating Characteristic (ROC) curves was used to statistically evaluate classifier performance. The results of this developed system are comparable to previous image processing based system. The system demonstration using DTW with GW for feature extraction and an MLP classifier led to promising results with respect to the accuracy of waste level estimation (98.50%). The application can be used to optimize the routing of waste collection based on the estimated bin level.
    Matched MeSH terms: Refuse Disposal/methods*
  11. Hannan MA, Arebey M, Begum RA, Basri H
    Waste Manag, 2012 Dec;32(12):2229-38.
    PMID: 22749722 DOI: 10.1016/j.wasman.2012.06.002
    An advanced image processing approach integrated with communication technologies and a camera for waste bin level detection has been presented. The proposed system is developed to address environmental concerns associated with waste bins and the variety of waste being disposed in them. A gray level aura matrix (GLAM) approach is proposed to extract the bin image texture. GLAM parameters, such as neighboring systems, are investigated to determine their optimal values. To evaluate the performance of the system, the extracted image is trained and tested using multi-layer perceptions (MLPs) and K-nearest neighbor (KNN) classifiers. The results have shown that the accuracy of bin level classification reach acceptable performance levels for class and grade classification with rates of 98.98% and 90.19% using the MLP classifier and 96.91% and 89.14% using the KNN classifier, respectively. The results demonstrated that the system performance is robust and can be applied to a variety of waste and waste bin level detection under various conditions.
    Matched MeSH terms: Refuse Disposal/methods*
  12. Fauziah SH, Agamuthu P
    Waste Manag Res, 2012 Jul;30(7):656-63.
    PMID: 22455994 DOI: 10.1177/0734242X12437564
    In Malaysia, landfills are being filled up rapidly due to the current daily generation of approximately 30,000 tonnes of municipal solid waste. This situation creates the crucial need for improved landfilling practices, as sustainable landfilling technology is yet to be achieved here. The objective of this paper is to identify and evaluate the development and trends in landfilling practices in Malaysia. In 1970, the disposal sites in Malaysia were small and prevailing waste disposal practices was mere open-dumping. This network of relatively small dumps, typically located close to population centres, was considered acceptable for a relatively low population of 10 million in Malaysia. In the 1980s, a national programme was developed to manage municipal and industrial wastes more systematically and to reduce adverse environmental impacts. The early 1990s saw the privatization of waste management in many parts of Malaysia, and the establishment of the first sanitary landfills for MSW and an engineered landfill (called 'secure landfill' in Malaysia) for hazardous waste. A public uproar in 2007 due to contamination of a drinking water source from improper landfilling practices led to some significant changes in the government's policy regarding the country's waste management strategy. Parliament passed the Solid Waste and Public Cleansing Management (SWPCM) Act 2007 in August 2007. Even though the Act is yet to be implemented, the government has taken big steps to improve waste management system further. The future of the waste management in Malaysia seems somewhat brighter with a clear waste management policy in place. There is now a foundation upon which to build a sound and sustainble waste management and disposal system in Malaysia.
    Matched MeSH terms: Refuse Disposal/methods*
  13. Abushammala MF, Basri NE, Basri H, Kadhum AA, El-Shafie AH
    Environ Monit Assess, 2013 Jun;185(6):4919-32.
    PMID: 23054277 DOI: 10.1007/s10661-012-2913-5
    Methane (CH₄) is one of the most relevant greenhouse gases and it has a global warming potential 25 times greater than that of carbon dioxide (CO₂), risking human health and the environment. Microbial CH₄ oxidation in landfill cover soils may constitute a means of controlling CH₄ emissions. The study was intended to quantify CH₄ and CO₂ emissions rates at the Sungai Sedu open dumping landfill during the dry season, characterize their spatial and temporal variations, and measure the CH₄ oxidation associated with the landfill cover soil using a homemade static flux chamber. Concentrations of the gases were analyzed by a Micro-GC CP-4900. Two methods, kriging values and inverse distance weighting (IDW), were found almost identical. The findings of the proposed method show that the ratio of CH₄ to CO₂ emissions was 25.4 %, indicating higher CO₂ emissions than CH₄ emissions. Also, the average CH₄ oxidation in the landfill cover soil was 52.5 %. The CH₄ and CO₂ emissions did not show fixed-pattern temporal variation based on daytime measurements. Statistically, a negative relationship was found between CH₄ emissions and oxidation (R(2) = 0.46). It can be concluded that the variation in the CH₄ oxidation was mainly attributed to the properties of the landfill cover soil.
    Matched MeSH terms: Refuse Disposal/methods*
  14. Aziz SQ, Aziz HA, Yusoff MS, Mohajeri S
    Environ Monit Assess, 2012 Oct;184(10):6147-58.
    PMID: 22068314 DOI: 10.1007/s10661-011-2409-8
    In this research, two types of sequencing batch reactors (SBRs) with 8 h of cycle times, namely non-powdered activated carbon (NPAC-SBR) and powdered activated carbon (PAC-SBR), were used for the treatment of raw leachates at Kulim and Pulau Burung landfill sites. To test the performance of SBRs, phenols, total iron, zinc, ammonia, nitrite, nitrate, color, suspended solids, chemical oxygen demand, biochemical oxygen demand, and total dissolved salts removal efficiencies and sludge volume index (SVI) were studied at both sites. The rates of phenols removal, for instance in NPAC-SBRs and PAC-SBRs at Kulim, were 25% and 55%, respectively, whereas those at Pulau Buring were 94.81% and 97.75%, respectively. PAC as adsorbent in PAC-SBRs enhanced the removal efficiencies of the aforementioned pollutants from leachates at both sites. In addition, PAC as adsorbent decreased the SVI values at Kulim (59.7 mL/g) and Pulau Burung (91.4 mL/g) leachates and improved the nitrification and denitrification processes.
    Matched MeSH terms: Refuse Disposal/methods*
  15. Hannan MA, Arebey M, Begum RA, Basri H
    Waste Manag, 2011 Dec;31(12):2406-13.
    PMID: 21871788 DOI: 10.1016/j.wasman.2011.07.022
    This paper deals with a system of integration of Radio Frequency Identification (RFID) and communication technologies for solid waste bin and truck monitoring system. RFID, GPS, GPRS and GIS along with camera technologies have been integrated and developed the bin and truck intelligent monitoring system. A new kind of integrated theoretical framework, hardware architecture and interface algorithm has been introduced between the technologies for the successful implementation of the proposed system. In this system, bin and truck database have been developed such a way that the information of bin and truck ID, date and time of waste collection, bin status, amount of waste and bin and truck GPS coordinates etc. are complied and stored for monitoring and management activities. The results showed that the real-time image processing, histogram analysis, waste estimation and other bin information have been displayed in the GUI of the monitoring system. The real-time test and experimental results showed that the performance of the developed system was stable and satisfied the monitoring system with high practicability and validity.
    Matched MeSH terms: Refuse Disposal/methods*
  16. Fung WY, Yuen KH, Liong MT
    J Agric Food Chem, 2010 Jul 14;58(13):8077-84.
    PMID: 20568772 DOI: 10.1021/jf1012506
    Oil palm trunk (OPT), oil palm frond (OPF), and okara are agrowastes generated abundantly by the palm oil and soy industries. There are vast potentials for these fibrous biomass rather than disposal at landfills or incineration. Fibrous materials (FM) and alkali-treated fibrous residues (FR) were produced from the selected wastes and subsequently characterized. Functional properties such as emulsifying properties, mineral-binding capacity, and free radical scavenging activity were also evaluated for possible development of functional products. Supernatants (FS) generated from the alkaline treatment contained soluble fractions of fibers and were also characterized and used for the production of nanofibers. Okara FM had the highest (P < 0.05) protein (31.5%) and fat (12.2%) contents, which were significantly reduced following alkali treatment. The treatment also increased total dietary fiber (TDF) in okara by 107.9%, in OPT by 67.2%, and in OPF by 25.1%. The increased fiber fractions in FR enhanced functional properties such as water-holding capacities and oil-holding capacities. Okara displayed the highest (P < 0.05) emulsifying properties compared to OPT and OPF. High IDF content of OPT and OPF contributed to high antioxidant activities (377.2 and 367.8% higher than that of okara, respectively; P < 0.05). The soluble fraction from alkali treatment of fibers was successfully electrospun into nanofibers, which can be further developed into nanoencapsulants for bioactive compound or drug delivery.
    Matched MeSH terms: Refuse Disposal/methods*
  17. Agamuthu P, Fauziah SH
    Waste Manag Res, 2011 Jan;29(1):13-9.
    PMID: 20880936 DOI: 10.1177/0734242X10383080
    Malaysia disposes of 28,500 tonnes of municipal solid waste directly into landfills daily. This fact alone necessitates sustainable landfills to avoid adverse impacts on the population and the environment. The aim of the present study was to elucidate the issues and challenges faced by waste managers in moving towards sustainable landfilling in Malaysia. Various factors influence the management of a landfill. Among them is the human factor, which includes attitude and public participation. Although Malaysia's economy is developing rapidly, public concern and awareness are not evolving in parallel and therefore participation towards sustainable waste management through the 'reduce, reuse and recycle' approach (3Rs) is severely lacking. Consequently, landfill space is exhausted earlier than scheduled and this is no longer sustainable in terms of security of disposal. Challenges also arise from the lack of funding and the increase in the price of land. Thus, most waste managers normally aim for 'just enough' to comply with the regulations. Investment for the establishment of landfills generally is minimized since landfilling operations are considered uneconomical after closure. Institutional factors also hamper the practice of sustainable landfilling in the country where 3Rs is not mandatory and waste separation is totally absent. Although there are huge obstacles to be dealt with in moving towards sustainable landfilling in Malaysia, recent developments in waste management policy and regulations have indicated that positive changes are possible in the near future. Consequently, with the issues solved and challenges tackled, landfills in Malaysia can then be managed effectively in a more sustainable manner.
    Matched MeSH terms: Refuse Disposal/methods
  18. Umar M, Aziz HA, Yusoff MS
    Waste Manag, 2010 Nov;30(11):2113-21.
    PMID: 20675113 DOI: 10.1016/j.wasman.2010.07.003
    Advanced oxidation processes (AOPs) such as Fenton, electro-Fenton and photo-Fenton have been applied effectively to remove refractory organics from landfill leachate. The Fenton reaction is based on the addition of hydrogen peroxide to the wastewater or leachate in the presence of ferrous salt as a catalyst. The use of this technique has proved to be one of the best compromises for landfill leachate treatment because of its environmental and economical advantages. Fenton process has been used successfully to mineralize wide range of organic constituents present in landfill leachate particularly those recalcitrant to biological degradation. The present study reviews the use of Fenton and related processes in terms of their increased application to landfill leachate. The effects of various operating parameters and their optimum ranges for maximum COD and color removal are reviewed with the conclusion that the Fenton and related processes are effective and competitive with other technologies for degradation of both raw and pre-treated landfill leachate.
    Matched MeSH terms: Refuse Disposal/methods*
  19. Naganathan S, Razak HA, Hamid SN
    Waste Manag Res, 2010 Sep;28(9):848-60.
    PMID: 20852000 DOI: 10.1177/0734242X09355073
    Incineration of industrial waste produces large quantities of bottom ash which are normally sent to secured landfill, but is not a sustainable solution. Use of bottom ash in engineering applications will contribute to sustainability and generate revenue. One way of using the industrial waste incineration bottom ash is in controlled low-strength material (CLSM). Use of bottom ash in CLSM has problems related to bleeding and excessive strength development and so an additive has to be used to control bleeding and strength development. The main objective of this research is to study the effect of kaolin addition on the performance of CLSM made using industrial waste incineration bottom ash. CLSM mixes were made with bottom ash, cement, and refined kaolin. Various tests were performed on the CLSM in fresh and hardened states including compressive strength, water absorption, California bearing ratio (CBR) and the tests for concentration of leachable substances on the bleed and leachate. The compressive strength of CLSM tested ranged from 0.11 to 9.86 MPa. CBR values ranged from 6 to 46, and water absorption values from 12 to 36%. It was shown that the addition of kaolin delayed the initial setting time of CLSM mixtures, reduced bleeding, lowered the compressive strength, and increased the values of water absorption, sorption, and initial surface absorption. The CLSM tested did not have corrosivity. It was shown that the hardened CLSM was non hazardous, and the addition of kaolin increased the concentration of heavy metals and salts in the bleed and leachate.
    Matched MeSH terms: Refuse Disposal/methods*
  20. Bashir MJ, Aziz HA, Yusoff MS, Huqe AA, Mohajeri S
    Water Sci Technol, 2010;61(3):641-9.
    PMID: 20150700 DOI: 10.2166/wst.2010.867
    Landfill leachate is one of the major contamination sources. In this study, the ability of synthetic ion exchange resins which carry different mobile ion for removing color, chemical oxygen demand (COD), and ammonia nitrogen (NH(3)-N) from stabilized leachate was investigated. The synthetic resin INDION 225 Na as a cationic exchanger and INDION FFIP MB as an anionic exchanger were used in this study. INDION 225 Na was used in hydrogen form (H(+)) and in sodium form (Na(+)), while INDION FFIP MB resin was used in hydroxide form (OH(-)) and in calcium form (Cl(-)) form. The results indicated better removal of color, COD and NH(3)-N by using INDION 225 Na in H(+) as compared with Na(+) form, while no performance differences were observed by using INDION FFIP MB in OH(-) or Cl(-) form. Applying cationic resin followed by anionic resin achieved 97, 88 and 94, percent removal of color, COD and NH(3)-N. The residual amounts were 160 Pt-Co, 290 mg/L and 110 mg/L of color, COD and NH(3)-N respectively.
    Matched MeSH terms: Refuse Disposal/methods*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links