Displaying publications 21 - 24 of 24 in total

Abstract:
Sort:
  1. Qattan MY, Bakker EY, Rajendran R, Chen DW, Saha V, Liu J, et al.
    PLoS One, 2017;12(6):e0178606.
    PMID: 28582465 DOI: 10.1371/journal.pone.0178606
    Glucocorticoids (GCs) and topoisomerase II inhibitors are used to treat acute lymphoblastic leukaemia (ALL) as they induce death in lymphoid cells through the glucocorticoid receptor (GR) and p53 respectively. Mechanisms underlying ALL cell death and the contribution of the bone marrow microenvironment to drug response/resistance remain unclear. The role of the microenvironment and the identification of chemoresistance determinants were studied by transcriptomic analysis in ALL cells treated with Dexamethasone (Dex), and Etoposide (Etop) grown in the presence or absence of bone marrow conditioned media (CM). The necroptotic (RIPK1) and the apoptotic (caspase-8/3) markers were downregulated by CM, whereas the inhibitory effects of chemotherapy on the autophagy marker Beclin-1 (BECN1) were reduced suggesting CM exerts cytoprotective effects. GCs upregulated the RIPK1 ubiquitinating factor BIRC3 (cIAP2), in GC-sensitive (CEM-C7-14) but not in resistant (CEM-C1-15) cells. In addition, CM selectively affected GR phosphorylation in a site and cell-specific manner. GR is recruited to RIPK1, BECN1 and BIRC3 promoters in the sensitive but not in the resistant cells with phosphorylated GR forms being generally less recruited in the presence of hormone. FACS analysis and caspase-8 assays demonstrated that CM promoted a pro-survival trend. High molecular weight proteins reacting with the RIPK1 antibody were modified upon incubation with the BIRC3 inhibitor AT406 in CEM-C7-14 cells suggesting that they represent ubiquitinated forms of RIPK1. Our data suggest that there is a correlation between microenvironment-induced ALL proliferation and altered response to chemotherapy.
    Matched MeSH terms: Receptor-Interacting Protein Serine-Threonine Kinases/genetics
  2. Braun DA, Rao J, Mollet G, Schapiro D, Daugeron MC, Tan W, et al.
    Nat Genet, 2017 Oct;49(10):1529-1538.
    PMID: 28805828 DOI: 10.1038/ng.3933
    Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibited cell proliferation, which human mutations did not rescue. Furthermore, knockdown of these genes impaired protein translation, caused endoplasmic reticulum stress, activated DNA-damage-response signaling, and ultimately induced apoptosis. Knockdown of OSGEP or TP53RK induced defects in the actin cytoskeleton and decreased the migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identified four new monogenic causes of GAMOS, describe a link between KEOPS function and human disease, and delineate potential pathogenic mechanisms.
    Matched MeSH terms: Protein-Serine-Threonine Kinases/genetics
  3. Tahir AA, Sani NF, Murad NA, Makpol S, Ngah WZ, Yusof YA
    Nutr J, 2015;14:31.
    PMID: 25889965 DOI: 10.1186/s12937-015-0015-2
    The interconnected Ras/ERK and PI3K/AKT pathways play a central role in colorectal tumorigenesis, and they are targets for elucidating mechanisms involved in attempts to induce colon cancer cell death. Both ginger (Zingiber officinale) and honey have been shown to exhibit anti-tumor and anti-inflammation properties against many types of cancer, including colorectal cancer. However, there are currently no reports showing the combined effect of these two dietary compounds in cancer growth inhibition. The aim of this study was to evaluate the synergistic effect of crude ginger extract and Gelam honey in combination as potential cancer chemopreventive agents against the colorectal cancer cell line HT29.
    Matched MeSH terms: Protein-Serine-Threonine Kinases/genetics
  4. Wong SW, Tiong KH, Kong WY, Yue YC, Chua CH, Lim JY, et al.
    Breast Cancer Res Treat, 2011 Jul;128(2):301-13.
    PMID: 20686837 DOI: 10.1007/s10549-010-1055-0
    Recent gene expression profiling studies have identified five breast cancer subtypes, of which the basal-like subtype is the most aggressive. Basal-like breast cancer poses serious clinical challenges as there are currently no targeted therapies available to treat it. Although there is increasing evidence that these tumors possess specific sensitivity to cisplatin, its success is often compromised due to its dose-limiting nephrotoxicity and the development of drug resistance. To overcome this limitation, our goal was to maximize the benefits associated with cisplatin therapy through drug combination strategies. Using a validated kinase inhibitor library, we showed that inhibition of the mTOR, TGFβRI, NFκB, PI3K/AKT, and MAPK pathways sensitized basal-like MDA-MB-468 cells to cisplatin treatment. Further analysis demonstrated that the combination of the mTOR inhibitor rapamycin and cisplatin generated significant drug synergism in basal-like MDA-MB-468, MDA-MB-231, and HCC1937 cells but not in luminal-like T47D or MCF-7 cells. We further showed that the synergistic effect of rapamycin plus cisplatin on basal-like breast cancer cells was mediated through the induction of p73. Depletion of endogenous p73 in basal-like cells abolished these synergistic effects. In conclusion, combination therapy with mTOR inhibitors and cisplatin may be a useful therapeutic strategy in the treatment of basal-like breast cancers.
    Matched MeSH terms: Protein-Serine-Threonine Kinases/genetics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links