Displaying publications 21 - 31 of 31 in total

Abstract:
Sort:
  1. Pawar S, Ashraf MI, Mujawar S, Mishra R, Lahiri C
    PMID: 30131943 DOI: 10.3389/fcimb.2018.00269
    Catheter-associated urinary tract infections (CAUTI) is an alarming hospital based disease with the increase of multidrug resistance (MDR) strains of Proteus mirabilis. Cases of long term hospitalized patients with multiple episodes of antibiotic treatments along with urinary tract obstruction and/or undergoing catheterization have been reported to be associated with CAUTI. The cases are complicated due to the opportunist approach of the pathogen having robust swimming and swarming capability. The latter giving rise to biofilms and probably inducible through autoinducers make the scenario quite complex. High prevalence of long-term hospital based CAUTI for patients along with moderate percentage of morbidity, cropping from ignorance about drug usage and failure to cure due to MDR, necessitates an immediate intervention strategy effective enough to combat the deadly disease. Several reports and reviews focus on revealing the important genes and proteins, essential to tackle CAUTI caused by P. mirabilis. Despite longitudinal countrywide studies and methodical strategies to circumvent the issues, effective means of unearthing the most indispensable proteins to target for therapeutic uses have been meager. Here, we report a strategic approach for identifying the most indispensable proteins from the genome of P. mirabilis strain HI4320, besides comparing the interactomes comprising the autoinducer-2 (AI-2) biosynthetic pathway along with other proteins involved in biofilm formation and responsible for virulence. Essentially, we have adopted a theoretical network model based approach to construct a set of small protein interaction networks (SPINs) along with the whole genome (GPIN) to computationally identify the crucial proteins involved in the phenomenon of quorum sensing (QS) and biofilm formation and thus, could be therapeutically targeted to fight out the MDR threats to antibiotics of P. mirabilis. Our approach utilizes the functional modularity coupled with k-core analysis and centrality scores of eigenvector as a measure to address the pressing issues.
    Matched MeSH terms: Protein Interaction Maps*
  2. Sim EU, Talwar SP
    BMC Mol Cell Biol, 2019 08 15;20(1):34.
    PMID: 31416416 DOI: 10.1186/s12860-019-0219-y
    BACKGROUND: Association of Epstein-Barr virus (EBV) encoded latent gene products with host ribosomal proteins (RPs) has not been fully explored, despite their involvement in the aetiology of several human cancers. To gain an insight into their plausible interactions, we employed a computational approach that encompasses structural alignment, gene ontology analysis, pathway analysis, and molecular docking.

    RESULTS: In this study, the alignment analysis based on structural similarity allows the prediction of 48 potential interactions between 27 human RPs and the EBV proteins EBNA1, LMP1, LMP2A, and LMP2B. Gene ontology analysis of the putative protein-protein interactions (PPIs) reveals their probable involvement in RNA binding, ribosome biogenesis, metabolic and biosynthetic processes, and gene regulation. Pathway analysis shows their possible participation in viral infection strategies (viral translation), as well as oncogenesis (Wnt and EGFR signalling pathways). Finally, our molecular docking assay predicts the functional interactions of EBNA1 with four RPs individually: EBNA1-eS10, EBNA1-eS25, EBNA1-uL10 and EBNA1-uL11.

    CONCLUSION: These interactions have never been revealed previously via either experimental or in silico approach. We envisage that the calculated interactions between the ribosomal and EBV proteins herein would provide a hypothetical model for future experimental studies on the functional relationship between ribosomal proteins and EBV infection.

    Matched MeSH terms: Protein Interaction Maps
  3. Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, et al.
    Cell Mol Life Sci, 2021 Jan;78(2):497-512.
    PMID: 32748155 DOI: 10.1007/s00018-020-03579-8
    YAP and TAZ are ubiquitously expressed homologous proteins originally identified as penultimate effectors of the Hippo signaling pathway, which plays a key role in maintaining mammalian tissue/organ size. Presently, it is known that YAP/TAZ also interact with various non-Hippo signaling pathways, and have diverse roles in multiple biological processes, including cell proliferation, tissue regeneration, cell lineage fate determination, tumorigenesis, and mechanosensing. In this review, we first examine the various microenvironmental cues and signaling pathways that regulate YAP/TAZ activation, through the Hippo and non-Hippo signaling pathways. This is followed by a brief summary of the interactions of YAP/TAZ with TEAD1-4 and a diverse array of other non-TEAD transcription factors. Finally, we offer a critical perspective on how increasing knowledge of the regulatory mechanisms of YAP/TAZ signaling might open the door to novel therapeutic applications in the interrelated fields of biomaterials, tissue engineering, regenerative medicine and synthetic biology.
    Matched MeSH terms: Protein Interaction Maps
  4. Duan H, Khan GJ, Shang LJ, Peng H, Hu WC, Zhang JY, et al.
    Food Chem Toxicol, 2021 Apr;150:112058.
    PMID: 33582168 DOI: 10.1016/j.fct.2021.112058
    The present study uses network pharmacology to study the potential mechanism of Schisandra against atherosclerosis. Drug-disease targets were explored through the traditional Chinese medicine systemic pharmacology network. STRING database and Cytoscape software were employed to construct a component/pathway-target interaction network to screen the key regulatory factors from Schisandra. For cellular, biological and molecular pathways, Gene Ontology (GO) and KEGG pathway analyses were used while the interceptive acquaintances of the pathways was obtained through Metascape database. Initial molecular docking analyses of components from Schisandra pointed the possible interaction of non-muscle myosin ⅡA (NM ⅡA) against atherosclerosis. The screening results from GO and KEGG identified 525 possible targets of 18 active ingredients from Schisandra that further pointed 1451 possible pathways against the pathogenesis of disease whereas 167 targets were further refined based on common/interesting signaling target pathways. Further results of molecular signaling by docking identified very compatible binding between NM IIA and the constituents of Schisandra. Schisandra has a possible target of the serotonergic synapse, neuroactive ligand-receptor interaction and also has close interference in tumor pathways through PTGS2, NOS3, HMOX1 and ESR1. Moreover, it is also concluded that Schisandra has a close association with neuroendocrine, immune-inflammation and oxidative stress. Therefore, it may have the potential of therapeutic utility against atherosclerosis.
    Matched MeSH terms: Protein Interaction Maps
  5. Mirsafian H, Ripen AM, Leong WM, Manaharan T, Mohamad SB, Merican AF
    Genomics, 2017 Oct;109(5-6):463-470.
    PMID: 28733102 DOI: 10.1016/j.ygeno.2017.07.003
    Differential gene and transcript expression pattern of human primary monocytes from healthy young subjects were profiled under different sequencing depths (50M, 100M, and 200M reads). The raw data consisted of 1.3 billion reads generated from RNA sequencing (RNA-Seq) experiments. A total of 17,657 genes and 75,392 transcripts were obtained at sequencing depth of 200M. Total splice junction reads showed an even more significant increase. Comparative analysis of the expression patterns of immune-related genes revealed a total of 217 differentially expressed (DE) protein-coding genes and 50 DE novel transcripts, in which 40 DE protein-coding genes were related to the immune system. At higher sequencing depth, more genes, known and novel transcripts were identified and larger proportion of reads were allowed to map across splice junctions. The results also showed that increase in sequencing depth has no effect on the sequence alignment.
    Matched MeSH terms: Protein Interaction Maps
  6. Tan XT, Amran FB, Thayan R, Ahmad N, Jaafar R, Haron R, et al.
    Electrophoresis, 2017 09;38(17):2141-2149.
    PMID: 28524240 DOI: 10.1002/elps.201600471
    Leptospirosis is an emerging zoonotic infectious disease in Malaysia. The symptoms of leptospirosis vary from mild nonspecific flu-like illness to a severe condition which is usually associated with serious complication and fatality. To study the protein expression profile of mild and severe leptospirosis, 15 paired sera were collected from the patients who were mildly infected and following that progressed to severe stage. The proteome profiles of mild and severe cases were studied using 2DE analysis in combination with LC-MS/MS. The expression of proteins that were significantly different and had a fold difference of at least 2 had been identified and then validated using Western blot. Our study demonstrated apolipoprotein A-I (APOA-I), serum amyloid A (SAA), transferrin (TF), haptoglobin (HP) and transthyretin (TTR) have significantly different expression between mild and severe leptospirosis. The Ingenuity Pathway Analysis software suggested the expression of these five proteins were modulated by acute phase response signaling pathway. Besides that, a functional network of lipid metabolism, molecular transport and small molecule biochemistry that interconnects these five proteins with interactomes also had been predicted by this software. In conclusion, this finding supports the potential of these five proteins to be the biomarkers for mild and severe human leptospirosis.
    Matched MeSH terms: Protein Interaction Maps
  7. Tan YJ, Lee YT, Mancera RL, Oon CE
    Life Sci, 2021 Nov 01;284:119747.
    PMID: 34171380 DOI: 10.1016/j.lfs.2021.119747
    BZD9L1 was previously described as a SIRT1/2 inhibitor with anti-cancer activities in colorectal cancer (CRC), either as a standalone chemotherapy or in combination with 5-fluorouracil. BZD9L1 was reported to induce apoptosis in CRC cells; however, the network of intracellular pathways and crosstalk between molecular players mediated by BZD9L1 is not fully understood. This study aimed to uncover the mechanisms involved in BZD9L1-mediated cytotoxicity based on previous and new findings for the prediction and identification of related pathways and key molecular players. BZD9L1-regulated candidate targets (RCTs) were identified using a range of molecular, cell-based and biochemical techniques on the HCT 116 cell line. BZD9L1 regulated major cancer pathways including Notch, p53, cell cycle, NFκB, Myc/MAX, and MAPK/ERK signalling pathways. BZD9L1 also induced reactive oxygen species (ROS), regulated apoptosis-related proteins, and altered cell polarity and adhesion profiles. In silico analyses revealed that most RCTs were interconnected, and were involved in the modulation of catalytic activity, metabolism and transcription regulation, response to cytokines, and apoptosis signalling pathways. These RCTs were implicated in p53-dependent apoptosis pathway. This study provides the first assessment of possible associations of molecular players underlying the cytotoxic activity of BZD9L1, and establishes the links between RCTs and apoptosis through the p53 pathway.
    Matched MeSH terms: Protein Interaction Maps/drug effects
  8. Ahsan N, Rao RSP, Wilson RS, Punyamurtula U, Salvato F, Petersen M, et al.
    Proteomics, 2021 05;21(10):e2000279.
    PMID: 33860983 DOI: 10.1002/pmic.202000279
    While protein-protein interaction is the first step of the SARS-CoV-2 infection, recent comparative proteomic profiling enabled the identification of over 11,000 protein dynamics, thus providing a comprehensive reflection of the molecular mechanisms underlying the cellular system in response to viral infection. Here we summarize and rationalize the results obtained by various mass spectrometry (MS)-based proteomic approaches applied to the functional characterization of proteins and pathways associated with SARS-CoV-2-mediated infections in humans. Comparative analysis of cell-lines versus tissue samples indicates that our knowledge in proteome profile alternation in response to SARS-CoV-2 infection is still incomplete and the tissue-specific response to SARS-CoV-2 infection can probably not be recapitulated efficiently by in vitro experiments. However, regardless of the viral infection period, sample types, and experimental strategies, a thorough cross-comparison of the recently published proteome, phosphoproteome, and interactome datasets led to the identification of a common set of proteins and kinases associated with PI3K-Akt, EGFR, MAPK, Rap1, and AMPK signaling pathways. Ephrin receptor A2 (EPHA2) was identified by 11 studies including all proteomic platforms, suggesting it as a potential future target for SARS-CoV-2 infection mechanisms and the development of new therapeutic strategies. We further discuss the potentials of future proteomics strategies for identifying prognostic SARS-CoV-2 responsive age-, gender-dependent, tissue-specific protein targets.
    Matched MeSH terms: Protein Interaction Maps
  9. Lee YH, Pang SW, Poh CL, Tan KO
    J Cancer Res Clin Oncol, 2016 Sep;142(9):1967-77.
    PMID: 27424190 DOI: 10.1007/s00432-016-2205-5
    PURPOSE: Members of paraneoplastic Ma (PNMA) family have been identified as onconeuronal antigens, which aberrant expressions in cancer cells of patients with paraneoplastic disorder (PND) are closely linked to manifestation of auto-immunity, neuro-degeneration, and cancer. The purpose of present study was to determine the role of PNMA5 and its functional relationship to MOAP-1 (PNMA4) in human cancer cells.

    METHODS: PNMA5 mutants were generated through deletion or site-directed mutagenesis and transiently expressed in human cancer cell lines to investigate their role in apoptosis, subcellular localization, and potential interaction with MOAP-1 through apoptosis assays, fluorescence microscopy, and co-immunoprecipitation studies, respectively.

    RESULTS: Over-expressed human PNMA5 exhibited nuclear localization pattern in both MCF-7 and HeLa cells. Deletion mapping and mutagenesis studies showed that C-terminus of PNMA5 is responsible for nuclear localization, while the amino acid residues (391KRRR) within the C-terminus of PNMA5 are required for nuclear targeting. Deletion mapping and co-immunoprecipitation studies showed that PNMA5 interacts with MOAP-1 and N-terminal domain of PNMA5 is required for interaction with MOAP-1. Furthermore, co-expression of PNMA5 and MOAP-1 in MCF-7 cells significantly enhanced chemo-sensitivity of MCF-7 to Etoposide treatment, indicating that PNMA5 and MOAP-1 interact synergistically to promote apoptotic signaling in MCF-7 cells.

    CONCLUSIONS: Our results show that PNMA5 promotes apoptosis signaling in HeLa and MCF-7 cells and interacts synergistically with MOAP-1 through its N-terminal domain to promote apoptosis and chemo-sensitivity in human cancer cells. The C-terminal domain of PNMA5 is required for nuclear localization; however, both N-and C-terminal domains of PNMA5 appear to be required for pro-apoptotic function.

    Matched MeSH terms: Protein Interaction Maps
  10. Chang HY, Hor SY, Lim KP, Zain RB, Cheong SC, Rahman MA, et al.
    Electrophoresis, 2013 Aug;34(15):2199-208.
    PMID: 23712713 DOI: 10.1002/elps.201300126
    This study aims to identify cancer-associated proteins in the secretome of oral cancer cell lines. We have successfully established four primary cell cultures of normal cells with a limited lifespan without human telomerase reverse transcriptase (hTERT) immortalization. The secretome of these primary cell cultures were compared with that of oral cancer cell lines using 2DE. Thirty five protein spots were found to have changed in abundance. Unambiguous identification of these proteins was achieved by MALDI TOF/TOF. In silico analysis predicted that 24 of these proteins were secreted via classical or nonclassical mechanisms. The mRNA expression of six genes was found to correlate with the corresponding protein abundance. Ingenuity Pathway Analysis (IPA) core analysis revealed that the identified proteins were relevant in, and related to, cancer development with likely involvements in tumor growth, metastasis, hyperproliferation, tumorigenesis, neoplasia, hyperplasia, and cell transformation. In conclusion, we have demonstrated that a comparative study of the secretome of cancer versus normal cell lines can be used to identify cancer-associated proteins.
    Matched MeSH terms: Protein Interaction Maps
  11. Kazi A, Hisyam Ismail CMK, Anthony AA, Chuah C, Leow CH, Lim BH, et al.
    Infect Genet Evol, 2020 06;80:104176.
    PMID: 31923724 DOI: 10.1016/j.meegid.2020.104176
    Shigellosis is one of the most common diseases found in the developing countries, especially those countries that are prone flood. The causative agent for this disease is the Shigella species. This organism is one of the third most common enteropathogens responsible for childhood diarrhea. Since Shigella can survive gastric acidity and is an intracellular pathogen, it becomes difficult to treat. Also, uncontrolled use of antibiotics has led to development of resistant strains which poses a threat to public health. Therefore, there is a need for long term control of Shigella infection which can be achieved by designing a proper and effective vaccine. In this study, emphasis was made on designing a candidate that could elicit both B-cell and T-cell immune response. Hence B- and T-cell epitopes of outer membrane channel protein (OM) and putative lipoprotein (PL) from S. flexneri 2a were computationally predicted using immunoinformatics approach and a chimeric construct (chimeric-OP) containing the immunogenic epitopes selected from OM and PL was designed, cloned and expressed in E. coli system. The immunogenicity of the recombinant chimeric-OP was assessed using Shigella antigen infected rabbit antibody. The result showed that the chimeric-OP was a synthetic peptide candidate suitable for the development of vaccine and immunodiagnostics against Shigella infection.
    Matched MeSH terms: Protein Interaction Maps
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links