Displaying publications 21 - 27 of 27 in total

Abstract:
Sort:
  1. Veiga MI, Asimus S, Ferreira PE, Martins JP, Cavaco I, Ribeiro V, et al.
    Eur J Clin Pharmacol, 2009 Apr;65(4):355-63.
    PMID: 18979093 DOI: 10.1007/s00228-008-0573-8
    AIM: The aim of this study was to obtain pharmacogenetic data in a Vietnamese population on genes coding for proteins involved in the elimination of drugs currently used for the treatment of malaria and human immunodeficiency virus/acquired immunodeficiency syndrome.

    METHOD: The main polymorphisms on the cytochrome P450 (CYP) genes, CYP2A6, CYP2B6, CYP2C19, CYP2D6, CYP3A4 and CYP3A5, and the multi-drug resistance 1 gene (MDR1) were genotyped in 78 healthy Vietnamese subjects. Pharmacokinetic metrics were available for CYP2A6 (coumarin), CYP2C19 (mephenytoin), CYP2D6 (metoprolol) and CYP3As (midazolam), allowing correlations with the determined genotype.

    RESULTS: In the CYP2 family, we detected alleles CYP2A6*4 (12%) and *5 (15%); CYP2B6*4 (8%), *6 (27%); CYP2C19*2 (31%) and *3 (6%); CYP2D6*4, *5, *10 (1, 8 and 44%, respectively). In the CYP3A family, CYP3A4*1B was detected at a low frequency (2%), whereas CYP3A5 *3 was detected at a frequency of 67%. The MDR1 3435T allele was present with a prevalence of 40%. Allele proportions in our cohort were compared with those reported for other Asian populations. CYP2C19 genotypes were associated to the S-4'-OH-mephenytoin/S-mephenytoin ratio quantified in plasma 4 h after intake of 100 mg mephenytoin. While CYP2D6 genotypes were partially reflected by the alpha-OH-metroprolol/metoprolol ratio in plasma 4 h after dosing, no correlation existed between midazolam plasma concentrations 4 h post-dose and CYP3A genotypes.

    CONCLUSIONS: The Vietnamese subjects of our study cohort presented allele prevalences in drug-metabolising enzymes that were generally comparable with those reported in other Asian populations. Deviations were found for CYP2A6*4 compared to a Chinese population (12 vs. 5%, respectively; P = 0.023), CYP2A6*5 compared with a Korean population (15 vs. <1%, respectively; P < 0.0001), a Malaysian population (1%; P < 0.0001) and a Chinese population (1%; P < 0.0001); CYP2B6*6 compared with a Korean population (27 vs. 12%; P = 0.002) and a Japanese population (16%; P = 0.021). Pharmacokinetic metrics versus genotype analysis reinforces the view that the predictive value of certain globally common variants (e.g. CYP2D6 single nucleotide polymorphisms) should be evaluated in a population-specific manner.

    Matched MeSH terms: P-Glycoproteins
  2. Lim MN, Lau NS, Chang KM, Leong CF, Zakaria Z
    Singapore Med J, 2007 Oct;48(10):932-8.
    PMID: 17909680
    The multidrug resistance gene, MDR1, is one of the genes responsible for resistance to chemotherapy in the treatment of leukaemia and other cancers. The discovery of RNA interference in mammalian cells has provided a powerful tool to inhibit the expression of this gene. However, very little is known about the transfection of leukaemia cells with short interfering RNA (siRNA) targeted at MDR1. This study aims to evaluate the effectiveness of two chemically-synthesised siRNA in modulating MDR1 gene and inhibiting P-glycoprotein expression in leukaemic cells. We also evaluated two siRNA delivery methods in this study.
    Matched MeSH terms: P-Glycoproteins
  3. Au A, Aziz Baba A, Goh AS, Wahid Fadilah SA, Teh A, Rosline H, et al.
    Biomed Pharmacother, 2014 Apr;68(3):343-9.
    PMID: 24581936 DOI: 10.1016/j.biopha.2014.01.009
    The introduction and success of imatinib mesylate (IM) has become a paradigm shift in chronic myeloid leukemia (CML) treatment. However, the high efficacy of IM has been hampered by the issue of clinical resistance that might due to pharmacogenetic variability. In the current study, the contribution of three common single nucleotide polymorphisms (SNPs) of ABCB1 (T1236C, G2677T/A and C3435T) and two SNPs of ABCG2 (G34A and C421A) genes in mediating resistance and/or good response among 215 CML patients on IM therapy were investigated. Among these patients, the frequency distribution of ABCG2 421 CC, CA and AA genotypes were significantly different between IM good response and resistant groups (P=0.01). Resistance was significantly associated with patients who had homozygous ABCB1 1236 CC genotype with OR 2.79 (95%CI: 1.217-6.374, P=0.01). For ABCB1 G2677T/A polymorphism, a better complete cytogenetic remission was observed for patients with variant TT/AT/AA genotype, compared to other genotype groups (OR=0.48, 95%CI: 0.239-0.957, P=0.03). Haplotype analysis revealed that ABCB1 haplotypes (C1236G2677C3435) was statistically linked to higher risk to IM resistance (25.8% vs. 17.4%, P=0.04), while ABCG2 diplotype A34A421 was significantly correlated with IM good response (9.1% vs. 3.9%, P=0.03). In addition, genotypic variant in ABCG2 421C>A was associated with a major molecular response (MMR) (OR=2.20, 95%CI: 1.273-3.811, P=0.004), whereas ABCB1 2677G>T/A variant was associated with a significantly lower molecular response (OR=0.49, 95%CI: 0.248-0.974, P=0.04). However, there was no significant correlation of these SNPs with IM intolerance and IM induced hepatotoxicity. Our results suggest the usefulness of genotyping of these single nucleotide polymorphisms in predicting IM response among CML patients.
    Matched MeSH terms: P-Glycoproteins/genetics
  4. Fazlina N, Maha A, Jamal R, Zarina AL, Cheong SK, Hamidah H, et al.
    Hematology, 2007 Feb;12(1):33-7.
    PMID: 17364990
    The expression of the multidrug resistance (MDR) proteins may influence the outcome of treatment in patients with acute leukemia. The aim of this study was to determine the IC50 of cytotoxic drugs (cytosine arabinoside, ara-C and daunorubicin, dnr) using the in vitro 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)2H-tetrazolium, inner salt (MTS) assay method. A total of 82 newly diagnosed acute leukemia cases (43 adult myeloid leukaemia, AML cases and 39 acute lymphoblastic leukaemia, ALL cases) and 16 relapsed cases (8 AML cases and 8 ALL cases) were studied. The MTS assay was performed using two cytotoxic drugs, dnr and ara-C. Cells were incubated with different concentrations of drugs for 4 days and the IC50 was extrapolated from the viability curve. In newly diagnosed cases, we found that childhood ALL samples showed higher IC50 values of dnr (0.040 +/- 2.320) compared to adult AML samples (0.021 +/- 0.158). In contrast, newly diagnosed adult AML samples showed higher IC50 values of ara-C (0.157 +/- 0.529) compared to childhood ALL samples (0.100 +/- 2.350). In relapsed cases, two samples of childhood ALL showed IC50 values of dnr (0.910 +/- 1.760) and ara-C (1.310 +/- 2.390), which was higher compared to childhood AML samples (0.129 +/- 0.214 and 0.210 +/- 0.003, respectively). However, there was no correlation between IC50 values of these drugs tested with clinical outcome. In conclusion, we found that MTS assay is an easy, rapid and non laborious method to study in vitro drug resistance in acute leukaemia cases.
    Matched MeSH terms: P-Glycoproteins/metabolism*
  5. Saeed MEM, Boulos JC, Elhaboub G, Rigano D, Saab A, Loizzo MR, et al.
    Phytomedicine, 2019 Sep;62:152945.
    PMID: 31132750 DOI: 10.1016/j.phymed.2019.152945
    BACKGROUND: Cucurbitacin E (CuE) is an oxygenated tetracyclic triterpenoid isolated from the fruits of Citrullus colocynthis (L.) Schrad.

    PURPOSE: This study outlines CuE's cytotoxic activity against drug-resistant tumor cell lines. Three members of ABC transporters superfamily, P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and ABCB5 were investigated, whose overexpression in tumors is tightly linked to multidrug resistance. Further factors of drug resistance studied were the tumor suppressor TP53 and the epidermal growth factor receptor (EGFR).

    METHODS: Cytotoxicity assays (resazurin assays) were used to investigate the activity of Citrullus colocynthis and CuE towards multidrug resistant cancer cells. Molecular docking (In silico) has been carried out to explore the CuE's mode of binding to ABC transporters (P-gp, BCRP and ABCB5). The visualization of doxorubicin uptake was done by a Spinning Disc Confocal Microscope. The assessment of proteins expression was done by western blotting analysis. COMPARE and hierarchical cluster analyses were applied to identify, which genes correlate with sensitivity or resistance to cucurbitacins (CuA, CuB, CuE, CuD, CuI, and CuK).

    RESULTS: Multidrug-resistant cells overexpressing P-gp or BCRP were cross-resistant to CuE. By contrast, TP53 knock-out cells were sensitive to CuE. Remarkably, resistant cells transfected with oncogenic ΔEGFR or ABCB5 were hypersensitive (collateral sensitive) to CuE. In silico analyses demonstrated that CuE is a substrate for P-gp and BCRP. Immunoblot analyses highlighted that CuE targeted EGFR and silenced its downstream signaling cascades. The most striking result that emerged from the doxorubicin uptake by ABCB5 overexpressing cells is that CuE is an effective inhibitor for ABCB5 transporter when compared with verapamil. The COMPARE analyses of transcriptome-wide expression profiles of tumor cell lines of the NCI identified common genes involved in cell cycle regulation, cellular adhesion and intracellular communication for different cucurbitacins.

    CONCLUSION: CuE represents a potential therapeutic candidate for the treatment of certain types of refractory tumors. To best of our knowledge, this is the first time to identify CuE and verapamil as inhibitors for ABCB5 transporter.

    Matched MeSH terms: P-Glycoproteins/metabolism
  6. Haerian BS, Lim KS, Mohamed EH, Tan HJ, Tan CT, Raymond AA, et al.
    Seizure, 2011 Jun;20(5):387-94.
    PMID: 21316268 DOI: 10.1016/j.seizure.2011.01.008
    It is proposed that overexpression of P-glycoprotein (P-gp), encoded by the ABC subfamily B member 1 (ABCB1) gene, is involved in resistance to antiepileptic drugs (AEDs) in about 30% of patients with epilepsy. Genetic variation and haplotype patterns are population specific which may cause different phenotypes such as response to AEDs. Although several studies examined the link between the common polymorphisms in the ABCB1 gene with resistance to AEDs, the results have been conflicting. This controversy may be caused by the effect of some confounders such as ethnicity and polytherapy. Moreover, expression of the ABCB1 gene is under the control of pregnane X receptor (PXR). Evidence showed that PXR gene contribute to the response to treatment. The aim of this study was to assess the association of ABCB1 and PXR genetic polymorphisms with response to the carbamazepine (CBZ) or sodium valproate (VPA) monotherapy in epilepsy. Genotypes were assessed in 685 Chinese, Indian, and Malay epilepsy patients for ABCB1 (C1236T, G2677T, C3435T) and PXR (G7635A) polymorphisms. No association between these polymorphisms and their haplotypes, and interaction between them, with response to treatment was observed in the overall group or in the Chinese, Indian, and Malay subgroups. Our data showed that these polymorphisms may not contribute to the response to CBZ or VPA monotherapy treatment in epilepsy.
    Matched MeSH terms: P-Glycoproteins
  7. Singh O, Chan JY, Lin K, Heng CC, Chowbay B
    PLoS One, 2012;7(12):e51771.
    PMID: 23272163 DOI: 10.1371/journal.pone.0051771
    This study aimed to explore the influence of SLC22A1, PXR, ABCG2, ABCB1 and CYP3A5 3 genetic polymorphisms on imatinib mesylate (IM) pharmacokinetics in Asian patients with chronic myeloid leukemia (CML).
    Matched MeSH terms: P-Glycoproteins
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links