Displaying publications 21 - 40 of 47 in total

Abstract:
Sort:
  1. Mazid MS, Rafii MY, Hanafi MM, Rahim HA, Latif MA
    Physiol Plant, 2013 Nov;149(3):432-47.
    PMID: 23521023 DOI: 10.1111/ppl.12054
    A field experiment was carried out in order to evaluate genetic diversity of 41 rice genotypes using physiological traits and molecular markers. All the genotypes unveiled variations for crop growth rate (CGR), relative growth rate (RGR), net assimilation rate (NAR), yield per hill (Yhill(-1)), total dry matter (TDM), harvest index (HI), photosynthetic rate (PR), leaf area index (LAI), chlorophyll-a and chlorophyll-b at maximum tillering stage. The CGR values varied from 0.23 to 0.76 gm cm(-2) day(-1). The Yhill(-1) ranged from 15.91 to 92.26 g, while TDM value was in the range of 7.49 to 20.45 g hill(-1). PR was found to vary from 9.40 to 22.34 µmol m(-2) s(-1). PR expressed positive relation with Yhill(-1). Significant positive relation was found between CGR and TDM (r = 0.61**), NAR and CGR (r = 0.62**) and between TDM and NAR (r = 0.31**). High heritability was found in RGR and Yhill(-1). Cluster analysis based on the traits grouped 41 rice genotypes into seven clusters. A total of 310 polymorphic loci were detected across the 20 inter-simple sequence repeats (ISSR) markers. The UPGMA dendrogram grouped 41 rice genotypes into 11 clusters including several sub-clusters. The Mantel test revealed positive correlation between quantitative traits and molecular markers (r = 0.41). On the basis of quantitative traits and molecular marker analyses parental genotypes, IRBB54 with MR84, IRBB60 with MR84, Purbachi with MR263, IRBB65 with BR29, IRBB65 with Pulut Siding and MRQ74 with Purbachi could be hybridized for future breeding program.
    Matched MeSH terms: Oryza/growth & development
  2. Panhwar QA, Radziah O, Zaharah AR, Sariah M, Razi IM
    J Environ Biol, 2011 Sep;32(5):607-12.
    PMID: 22319876
    Use of phosphate-solubilizing bacteria (PSB) as inoculants has concurrently increased phosphorous uptake in plants and improved yields in several crop species. The ability of PSB to improve growth of aerobic rice (Oryza sativa L.) through enhanced phosphorus (P) uptake from Christmas island rock phosphate (RP) was studied in glasshouse experiments. Two isolated PSB strains; Bacillus spp. PSB9 and PSB16, were evaluated with RP treatments at 0, 30 and 60 kg ha(-1). Surface sterilized seeds of aerobic rice were planted in plastic pots containing 3 kg soil and the effect of treatments incorporated at planting were observed over 60 days of growth. The isolated PSB strains (PSB9 and PSB16) solubilized significantly high amounts of P (20.05-24.08 mg kg(-1)) compared to non-inoculated (19-23.10 mg kg(-1)) treatments. Significantly higher P solubilization (24.08 mg kg(-1)) and plant P uptake (5.31 mg plant(-1)) was observed with the PSB16 strain at the highest P level of 60 kg ha(-1). The higher amounts of soluble P in the soil solution increased P uptake in plants and resulted in higher plant biomass (21.48 g plant(-1)). PSB strains also increased plant height (80 cm) and improved root morphology in aerobic rice. The results showed that inoculation of aerobic rice with PSB improved phosphate solubilizing activity of incorporated RP.
    Matched MeSH terms: Oryza/growth & development*
  3. Gurr GM, Lu Z, Zheng X, Xu H, Zhu P, Chen G, et al.
    Nat Plants, 2016 02 22;2:16014.
    PMID: 27249349 DOI: 10.1038/nplants.2016.14
    Global food security requires increased crop productivity to meet escalating demand(1-3). Current food production systems are heavily dependent on synthetic inputs that threaten the environment and human well-being(2,4,5). Biodiversity, for instance, is key to the provision of ecosystem services such as pest control(6,7), but is eroded in conventional agricultural systems. Yet the conservation and reinstatement of biodiversity is challenging(5,8,9), and it remains unclear whether the promotion of biodiversity can reduce reliance on inputs without penalizing yields on a regional scale. Here we present results from multi-site field studies replicated in Thailand, China and Vietnam over a period of four years, in which we grew nectar-producing plants around rice fields, and monitored levels of pest infestation, insecticide use and yields. Compiling the data from all sites, we report that this inexpensive intervention significantly reduced populations of two key pests, reduced insecticide applications by 70%, increased grain yields by 5% and delivered an economic advantage of 7.5%. Additional field studies showed that predators and parasitoids of the main rice pests, together with detritivores, were more abundant in the presence of nectar-producing plants. We conclude that a simple diversification approach, in this case the growth of nectar-producing plants, can contribute to the ecological intensification of agricultural systems.
    Matched MeSH terms: Oryza/growth & development
  4. Shultana R, Kee Zuan AT, Yusop MR, Saud HM
    PLoS One, 2020;15(9):e0238537.
    PMID: 32886707 DOI: 10.1371/journal.pone.0238537
    In this study, we characterized, identified, and determined the effect of salt-tolerant PGPR isolated from coastal saline areas on rice growth and yield. A total of 44 bacterial strains were isolated, and 5 were found to be tolerant at high salt concentration. These isolates were further characterized for salinity tolerance and beneficial traits through a series of quantitative tests. Biochemical characterization showed that bacterial survivability decreases gradually with the increase of salt concentration. One of the strains, UPMRB9, produced the highest amount of exopolysaccharides when exposed to 1.5M of NaCl. Moreover, UPMRB9 absorbed the highest amount of sodium from the 1.5M of NaCl-amended media. The highest floc yield and biofilm were produced by UPMRE6 and UPMRB9 respectively, at 1M of NaCl concentration. The SEM observation confirmed the EPS production of UPMRB9 and UPMRE6 at 1.5M of NaCl concentration. These two isolates were identified as Bacillus tequilensis and Bacillus aryabhattai based on the 16S rRNA gene sequence. The functional group characterization of EPS showed the presence of hydroxyl, carboxyl, and amino groups. This corresponded to the presence of carbohydrates and proteins in the EPS and glucose was identified as the major type of carbohydrate. The functional groups of EPS can help to bind and chelate Na+ in the soil and thereby reduces the plant's exposure to the ion under saline conditions. The plant inoculation study revealed significant beneficial effects of bacterial inoculation on photosynthesis, transpiration, and stomatal conductance of the plant which leads to a higher yield. The Bacillus tequilensis and Bacillus aryabhattai strains showed good potential as PGPR for salinity mitigation practice for coastal rice cultivation.
    Matched MeSH terms: Oryza/growth & development*
  5. Ab Halim AAB, Rafii MY, Osman MB, Oladosu Y, Chukwu SC
    Biomed Res Int, 2021;2021:8350136.
    PMID: 34095311 DOI: 10.1155/2021/8350136
    High kernel elongation (HKE) is one of the high-quality characteristics in rice. The objectives of this study were to determine the effects of ageing treatments, gene actions, and inheritance pattern of kernel elongation on cooking quality in two populations of rice and determine the path of influence and contribution of other traits to kernel elongation in rice. Two rice populations derived from crosses between MR219 × Mahsuri Mutan and MR219 × Basmati 370 were used. The breeding materials included two F1 progenies from the two populations, and their respective parents were grown in four different batches at a week interval to synchronize the flowering between the female and male plants. Scaling tests and generation means analysis were carried out to determine ageing effects and estimate additive-dominance gene action and epistasis. The estimation of gene interaction was based on quantitative traits. Path coefficient analysis was done using SAS software version 9.4 to determine the path of influence (direct or indirect) of six quantitative traits on HKE. Results obtained showed that nonallelic gene interaction was observed in all traits. The results before ageing and after ageing showed significant differences in all traits, while the gene interaction changed after ageing. The HKE value improved after ageing, suggesting that ageing is an external factor that could influence gene expression. The epistasis effect for HKE obtained from the cross Mahsuri Mutan × MR219 showed duplicate epistasis while that obtained from a cross between Basmati 370 × MR219 showed complimentary epistasis. Besides, the heritability of HKE was higher in Basmati 370 × MR219 compared to that obtained in Mahsuri Mutan × MR219. The path analysis showed that the cooked grain length and length-width ratio positively significantly affected HKE. It was concluded that ageing treatment is an external factor that could improve the expression of HKE. The findings from this study would be useful to breeders in the selection and development of new specialty (HKE) rice varieties.
    Matched MeSH terms: Oryza/growth & development*
  6. Bzour M, Zuki FM, Mispan MS, Jodeh S, Abdel-Latif M
    Bull Environ Contam Toxicol, 2019 Aug;103(2):348-353.
    PMID: 31069403 DOI: 10.1007/s00128-019-02625-x
    The residual activity of herbicides may be detrimental to the environment, requiring analysis of the persistent residues in the soil and water. A field study was conducted to measure the residues of Imidazolinone (IMI) in three Clearfield® rice field soils at three different locations in Malaysia. The analyses of IMI in the soil samples were carried out using a high-performance liquid chromatography (HPLC). These herbicides are widely used; however, few studies have been conducted on both residues, especially in the context of Malaysian soil. Residues of imazapic and imazapyr were found to fall within 0.03-0.58 µg/mL and 0.03-1.96 µg/mL, respectively, in three locations. IMI herbicides are persistent in the soil, and their residues remain for up to 85 days after application. A pre-harvest study was suggested for these herbicides on water, which will provide a clearer indicator on the use of IMI in Clearfield® rice fields.
    Matched MeSH terms: Oryza/growth & development*
  7. Zhu J, Li Y, Jiang H, Liu C, Lu W, Dai W, et al.
    Ecotoxicology, 2018 May;27(4):411-419.
    PMID: 29404868 DOI: 10.1007/s10646-018-1904-x
    The novel mesoionic insecticide triflumezopyrim was highly effective in controlling both imidacloprid-susceptible and resistant planthopper populations in Malaysia. However, the toxicity of triflumezopyrim to planthopper populations and their natural enemies has been under-investigated in China. In this study, the median lethal concentrations (LC50) of triflumezopyrim were determined in eight field populations of Nilaparvata lugens and one population of Sogatella furcifera from China under laboratory conditions. Triflumezopyrim showed higher toxicity to planthopper populations than the commonly-used insecticide, imidacloprid. Furthermore, the lethal effect of triflumezopyrim on eight beneficial arthropods of planthoppers was investigated in the laboratory and compared with three commonly-used insecticides, thiamethoxam, chlorpyrifos and abamectin. Triflumezopyrim was harmless to Anagrus nilaparvatae, Cyrtorhinus lividipennis and Paederus fuscipes, while thiamethoxam, chlorpyrifos and abamectin were moderately harmful or harmful to the insect parasitoid and predators. Triflumezopyrim and thiamethoxam were harmless to the predatory spiders Pirata subpiraticus, Ummeliata insecticeps, Hylyphantes graminicola and Pardosa pseudoannulata, and slightly harmful to Theridion octomaculatum. Chlorpyrifos caused slight to high toxicity to four spider species except U. insecticeps. Abamectin was moderately to highly toxic to all five spider species. Our results indicate that triflumezopyrim has high efficacy for rice planthoppers populations and is compatibile with their natural enemies in China.
    Matched MeSH terms: Oryza/growth & development
  8. Pramai P, Abdul Hamid NA, Mediani A, Maulidiani M, Abas F, Jiamyangyuen S
    J Food Drug Anal, 2018 01;26(1):47-57.
    PMID: 29389588 DOI: 10.1016/j.jfda.2016.11.023
    In an attempt to profile the metabolites of three different varieties of germinated rice, specifically black (GBR), red, and white rice, a 1H-nuclear-magnetic-resonance-based metabolomics approach was conducted. Multivariate data analysis was applied to discriminate between the three different varieties using a partial least squares discriminant analysis (PLS-DA) model. The PLS model was used to evaluate the relationship between chemicals and biological activities of germinated rice. The PLS-DA score plot exhibited a noticeable separation between the three rice varieties into three clusters by PC1 and PC2. The PLS model indicated that α-linolenic acid, γ-oryzanol, α-tocopherol, γ-aminobutyric acid, 3-hydroxybutyric acid, fumaric acid, fatty acids, threonine, tryptophan, and vanillic acid were significantly correlated with the higher bioactivities demonstrated by GBR that was extracted in 100% ethanol. Subsequently, the proposed biosynthetic pathway analysis revealed that the increased quantities of secondary metabolites found in GBR may contribute to its nutritional value and health benefits.
    Matched MeSH terms: Oryza/growth & development
  9. Panhwar QA, Naher UA, Shamshuddin J, Jusop S, Othman R, Latif MA, et al.
    PLoS One, 2014;9(10):e97241.
    PMID: 25285745 DOI: 10.1371/journal.pone.0097241
    A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia). The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmol(c) kg(-1), respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB) including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis). The isolated strains were capable of producing indoleacetic acid (IAA) and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65%) existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM) was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils.
    Matched MeSH terms: Oryza/growth & development*
  10. Khandanlou R, Ahmad MB, Fard Masoumi HR, Shameli K, Basri M, Kalantari K
    PLoS One, 2015;10(3):e0120264.
    PMID: 25815470 DOI: 10.1371/journal.pone.0120264
    Rice straw/magnetic nanocomposites (RS/Fe3O4-NCs) were prepared via co-precipitation method for removal of Pb(II) and Cu(II) from aqueous solutions. Response surface methodology (RSM) was utilized to find the optimum conditions for removal of ions. The effects of three independent variables including initial ion concentration, removal time, and adsorbent dosage were investigated on the maximum adsorption of Pb (II) and Cu (II). The optimum conditions for the adsorption of Pb(II) and Cu(II) were obtained (100 and 60 mg/L) of initial ion concentration, (41.96 and 59.35 s) of removal time and 0.13 g of adsorbent for both ions, respectively. The maximum removal efficiencies of Pb(II) and Cu(II) were obtained 96.25% and 75.54%, respectively. In the equilibrium isotherm study, the adsorption data fitted well with the Langmuir isotherm model. The adsorption kinetics was best depicted by the pseudo-second order model. Desorption experiments showed adsorbent can be reused successfully for three adsorption-desorption cycles.
    Matched MeSH terms: Oryza/growth & development*
  11. Yeang HY
    J Exp Bot, 2013 Jul;64(10):2643-52.
    PMID: 23645867 DOI: 10.1093/jxb/ert130
    In photoperiodic flowering, long-day (LD) plants are induced to flower seasonally when the daylight hours are long, whereas flowering in short-day (SD) plants is promoted under short photoperiods. According to the widely accepted external coincidence model, flowering occurs in LD Arabidopsis when the circadian rhythm of the gene CONSTANS (CO) peaks in the afternoon, when it is light during long days but dark when the days are short. Nevertheless, extending this explanation to SD flowering in rice, Oriza sativa, requires LD and SD plants to have 'opposite light requirements' as the CO orthologue in rice, HEADING-DATE1 (Hd1), promotes flowering only under short photoperiods. This report proposes a role of the plant's solar rhythm in promoting seasonal flowering. The interaction between rhythmic genes entrained to the solar clock and those entrained to the circadian clock form the basis of an internal coincidence model that explains both LD and SD flowering equally well. The model invokes no presumption of opposite light requirements between LD and SD plants, and further argues against any specific requirement of either light or darkness for SD flowering. Internal coincidence predicts the inhibition of SD flowering of the rice plant by a night break (a brief interruption of light), while it also provides a plausible explanation for how a judiciously timed night break promotes Arabidopsis flowering even on short days. It is the timing of the light transitions (sunrise and sunset) rather than the duration of light or darkness per se that regulates photoperiod-controlled flowering.
    Matched MeSH terms: Oryza/growth & development
  12. Cheah BH, Jadhao S, Vasudevan M, Wickneswari R, Nadarajah K
    PLoS One, 2017;12(10):e0186382.
    PMID: 29045473 DOI: 10.1371/journal.pone.0186382
    A cross between IR64 (high-yielding but drought-susceptible) and Aday Sel (drought-tolerant) rice cultivars yielded a stable line with enhanced grain yield under drought screening field trials at International Rice Research Institute. The major effect qDTY4.1 drought tolerance and yield QTL was detected in the IR77298-14-1-2-10 Backcrossed Inbred Line (BIL) and its IR87705-7-15-B Near Isogenic Line (NIL) with 93.9% genetic similarity to IR64. Although rice yield is extremely susceptible to water stress at reproductive stage, currently, there is only one report on the detection of drought-responsive microRNAs in inflorescence tissue of a Japonica rice line. In this study, more drought-responsive microRNAs were identified in the inflorescence tissues of IR64, IR77298-14-1-2-10 and IR87705-7-15-B via next-generation sequencing. Among the 32 families of inflorescence-specific non-conserved microRNAs that were identified, 22 families were up-regulated in IR87705-7-15-B. Overall 9 conserved and 34 non-conserved microRNA families were found as drought-responsive in rice inflorescence with 5 conserved and 30 non-conserved families induced in the IR87705-7-15-B. The observation of more drought-responsive non-conserved microRNAs may imply their prominence over conserved microRNAs in drought response mechanisms of rice inflorescence. Gene Ontology annotation analysis on the target genes of drought-responsive microRNAs identified in IR87705-7-15-B revealed over-representation of biological processes including development, signalling and response to stimulus. Particularly, four inflorescence-specific microRNAs viz. osa-miR5485, osa-miR5487, osa-miR5492 and osa-miR5517, and two non-inflorescence specific microRNAs viz. osa-miR169d and osa-miR169f.2 target genes that are involved in flower or embryonic development. Among them, osa-miR169d, osa-miR5492 and osa-miR5517 are related to flowering time control. It is also worth mentioning that osa-miR2118 and osa-miR2275, which are implicated in the biosynthesis of rice inflorescence-specific small interfering RNAs, were induced in IR87705-7-15-B but repressed in IR77298-14-1-2-10. Further, gene search within qDTY4.1 QTL region had identified multiple copies of NBS-LRR resistance genes (potential target of osa-miR2118), subtilisins and genes implicated in stomatal movement, ABA metabolism and cuticular wax biosynthesis.
    Matched MeSH terms: Oryza/growth & development
  13. Ali LG, Nulit R, Ibrahim MH, Yien CYS
    Sci Rep, 2021 Feb 16;11(1):3864.
    PMID: 33594103 DOI: 10.1038/s41598-021-83434-3
    Rice is an important staple crop produced and consumed worldwide. However, poor seed emergence is one of the main impediments to obtaining higher yield of rice especially in hot and dry ecosystems of the world that are ravaged by drought. Therefore, this study was carried out to evaluate the effects of potassium nitrate (KNO3), salicylic acid (SA) and silicon dioxide (SiO2) priming in improving emergence, seedling growth, biochemical attributes and antioxidant activities of FARO44 rice under drought conditions. Rice seedlings primed with 2.5% and 5% KNO3, 3% and 3.5% SiO2, and 1 mM and 2.5 mM SA were subjected to three drought levels of low, moderate and severe under the greenhouse. Seed emergence, seedling growth, biochemical attributes and antioxidant activities were thereafter evaluated. Seed priming experiments were laid in a completely randomized design with five replicates per treatment. The results found that rice seedlings responded differently to different priming treatments. However, all primed rice seedlings had significantly (P ≤ 0.05) improved emergence percentage (72-92%), seedling growth, seedling vigor, seedling fresh and dry biomass and shorter emergence time compared with controls. Likewise, total soluble protein content, activities of catalase, ascorbate peroxidase and superoxide dismutase, carbohydrate, soluble sugar and total chlorophyll contents of rice seedlings were increased by more than two-folds by seed priming compared with control. Salicylic acid showed less effect in increasing emergence, seedling growth, antioxidant activities and biochemical attributes of rice. Thus, this study established that seed priming with KNO3 (2.5% and 5%) and SiO2 (3% and 3.5%) were more effective in improving emergence, seedling growth, biochemical attributes and antioxidant activities of FARO44. Thus, priming of FARO44 rice with this chemical is recommended for fast emergence, seedling growth and drought resistance in dry ecosystems.
    Matched MeSH terms: Oryza/growth & development
  14. Doni F, Suhaimi NSM, Mispan MS, Fathurrahman F, Marzuki BM, Kusmoro J, et al.
    Int J Mol Sci, 2022 Jan 10;23(2).
    PMID: 35054923 DOI: 10.3390/ijms23020737
    Rice, the main staple food for about half of the world's population, has had the growth of its production stagnate in the last two decades. One of the ways to further improve rice production is to enhance the associations between rice plants and the microbiome that exists around, on, and inside the plant. This article reviews recent developments in understanding how microorganisms exert positive influences on plant growth, production, and health, focusing particularly on rice. A variety of microbial species and taxa reside in the rhizosphere and the phyllosphere of plants and also have multiple roles as symbiotic endophytes while living within plant tissues and even cells. They alter the morphology of host plants, enhance their growth, health, and yield, and reduce their vulnerability to biotic and abiotic stresses. The findings of both agronomic and molecular analysis show ways in which microorganisms regulate the growth, physiological traits, and molecular signaling within rice plants. However, many significant scientific questions remain to be resolved. Advancements in high-throughput multi-omics technologies can be used to elucidate mechanisms involved in microbial-rice plant associations. Prospectively, the use of microbial inoculants and associated approaches offers some new, cost-effective, and more eco-friendly practices for increasing rice production.
    Matched MeSH terms: Oryza/growth & development*
  15. Tiwari GJ, Liu Q, Shreshtha P, Li Z, Rahman S
    BMC Plant Biol, 2016 08 31;16(1):189.
    PMID: 27581494 DOI: 10.1186/s12870-016-0881-6
    BACKGROUND: The bran from polished rice grains can be used to produce rice bran oil (RBO). High oleic (HO) RBO has been generated previously through RNAi down-regulation of OsFAD2-1. HO-RBO has higher oxidative stability and could be directly used in the food industry without hydrogenation, and is hence free of trans fatty acids. However, relative to a classic oilseed, lipid metabolism in the rice grain is poorly studied and the genetic alteration in the novel HO genotype remains unexplored.

    RESULTS: Here, we have undertaken further analysis of role of OsFAD2-1 in the developing rice grain. The use of Illumina-based NGS transcriptomics analysis of developing rice grain reveals that knockdown of Os-FAD2-1 gene expression was accompanied by the down regulation of the expression of a number of key genes in the lipid biosynthesis pathway in the HO rice line. A slightly higher level of oil accumulation was also observed in the HO-RBO.

    CONCLUSION: Prominent among the down regulated genes were those that coded for FatA, LACS, SAD2, SAD5, caleosin and steroleosin. It may be possible to further increase the oleic acid content in rice oil by altering the expression of the lipid biosynthetic genes that are affected in the HO line.

    Matched MeSH terms: Oryza/growth & development
  16. Shultana R, Kee Zuan AT, Yusop MR, Saud HM, El-Shehawi AM
    PLoS One, 2021;16(12):e0260869.
    PMID: 34898612 DOI: 10.1371/journal.pone.0260869
    Soil salinity exert negative impacts on agricultural production and regarded as a crucial issue in global wetland rice production (Oryza sativa L.). Indigenous salt-tolerant plant growth-promoting rhizobacteria (Bacillus sp.) could be used for improving rice productivity under salinity stress. This study screened potential salt-tolerant plant growth-promoting rhizobacteria (PGPR) collected from coastal salt-affected rice cultivation areas under laboratory and glasshouse conditions. Furthermore, the impacts of these PGPRs were tested on biochemical attributes and nutrient contents in various rice varieties under salt stress. The two most promising PGPR strains, i.e., 'UPMRB9' (Bacillus tequilensis 10b) and 'UPMRE6' (Bacillus aryabhattai B8W22) were selected for glasshouse trial. Results indicated that 'UPMRB9' improved osmoprotectant properties, i.e., proline and total soluble sugar (TSS), antioxidant enzymes like superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT). Moreover, 'UPMRB9' inoculated rice plants accumulated higher amount of nitrogen and calcium in tissues. Therefore, the indigenous salt-tolerant PGPR strain 'UPMRB9' could be used as a potential bio-augmentor for improving biochemical attributes and nutrient uptake in rice plants under salinity stress. This study could serve as a preliminary basis for future large-scale trials under glasshouse and field conditions.
    Matched MeSH terms: Oryza/growth & development*
  17. Hakim MA, Juraimi AS, Hanafi MM, Ismail MR, Selamat A, Rafii MY, et al.
    Biomed Res Int, 2014;2014:208584.
    PMID: 24579076 DOI: 10.1155/2014/208584
    Five Malaysian rice (Oryza sativa L.) varieties, MR33, MR52, MR211, MR219, and MR232, were tested in pot culture under different salinity regimes for biochemical response, physiological activity, and grain yield. Three different levels of salt stresses, namely, 4, 8, and 12 dS m(-1), were used in a randomized complete block design with four replications under glass house conditions. The results revealed that the chlorophyll content, proline, sugar content, soluble protein, free amino acid, and yield per plant of all the genotypes were influenced by different salinity levels. The chlorophyll content was observed to decrease with salinity level but the proline increased with salinity levels in all varieties. Reducing sugar and total sugar increased up to 8 dS m(-1) and decreased up to 12 dS m(-1). Nonreducing sugar decreased with increasing the salinity levels in all varieties. Soluble protein and free amino acid also decreased with increasing salinity levels. Cortical cells of MR211 and MR232 did not show cell collapse up to 8 dS m(-1) salinity levels compared to susceptible checks (IR20 and BRRI dhan29). Therefore, considering all parameters, MR211 and MR232 showed better salinity tolerance among the tested varieties. Both cluster and principal component analyses depict the similar results.
    Matched MeSH terms: Oryza/growth & development*
  18. Shammugasamy B, Ramakrishnan Y, Ghazali HM, Muhammad K
    J Sci Food Agric, 2015 Mar 15;95(4):672-8.
    PMID: 24841131 DOI: 10.1002/jsfa.6742
    The present study examined the contents of tocopherols and tocotrienols and their distribution in 58 different varieties of whole rice cultivated in Malaysia. The analytical method used was saponification of samples followed by dispersive liquid-liquid microextraction and reverse phase high-performance liquid chromatography.
    Matched MeSH terms: Oryza/growth & development
  19. Mohd Esa N, Abdul Kadir KK, Amom Z, Azlan A
    Food Chem, 2013 Nov 15;141(2):1306-12.
    PMID: 23790918 DOI: 10.1016/j.foodchem.2013.03.086
    Antioxidant activity of different rice extract and the effect on the levels of antioxidant enzyme activity, superoxide dismutase (SOD) and glutathione peroxidase (GPx), vitamin E, lipid peroxidation and liver enzymes in hyperlipidaemia rabbits were investigated. Germinated brown rice (GBR) has the highest antioxidant activity compared to white rice (WR) and brown rice (BR). All rice grains increased the activity of SOD and GPx. However, vitamin E levels increased only in the groups that received the BR and GBR diets. The reduction of lipid peroxidation levels and activity of hepatic enzymes (alanine transferase, ALT and aspartate transaminase, AST) were only significantly observed in the GBR group. In conclusion, GBR supplementation has the greatest impact on increasing antioxidant enzyme activity and vitamin E level and on reducing lipid peroxidation in hypercholesterolaemia rabbit, thereby preventing the formation of atherosclerotic plaques. Furthermore, GBR diet can also reduce the level of hepatic enzymes.
    Matched MeSH terms: Oryza/growth & development
  20. Roohinejad S, Omidizadeh A, Mirhosseini H, Saari N, Mustafa S, Yusof RM, et al.
    J Sci Food Agric, 2010 Jan 30;90(2):245-51.
    PMID: 20355038 DOI: 10.1002/jsfa.3803
    Brown rice is unpolished rice with immeasurable benefits for human health. Brown rice (BR) and pre-germinated brown rice (PGBR) are known to contain various functional compounds such as gamma-oryzanol, dietary fibre and gamma-aminobutyric acid (GABA). In the present study, the experimental diets containing BR and PGBR (24, 48 h pre-germination) were used to investigate the influence of pre-germination time of brown rice on blood cholesterol in Sprague-Dawley male rats.
    Matched MeSH terms: Oryza/growth & development
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links