Displaying publications 21 - 37 of 37 in total

Abstract:
Sort:
  1. Tan C, Seet G, Sluzek A, Wang X, Yuen CT, Fam CY, et al.
    Opt Express, 2010 Sep 27;18(20):21147-54.
    PMID: 20941011 DOI: 10.1364/OE.18.021147
    The range-gated imaging systems are reliable underwater imaging system with the capability to minimize backscattering effect from turbid media. The tail-gating technique has been developed to fine tune the signal to backscattering ratio and hence improve the gated image quality. However, the tail-gating technique has limited image quality enhancement in high turbidity levels. In this paper, we developed a numerical model of range-gated underwater imaging system for near target in turbid medium. The simulation results matched the experimental work favorably. Further investigation using this numerical model shows that the multiple scattering components of the backscattering noise dominate for propagation length larger than 4.2 Attenuation Length (AL). This has limited the enhancement of tail-gating technique in high turbidity conditions.
    Matched MeSH terms: Optics and Photonics*
  2. Kamal Eddin FB, Wing Fen Y
    Sensors (Basel), 2020 Feb 14;20(4).
    PMID: 32075167 DOI: 10.3390/s20041039
    Nowadays, several neurological disorders and neurocrine tumours are associated with dopamine (DA) concentrations in various biological fluids. Highly accurate and ultrasensitive detection of DA levels in different biological samples in real-time can change and improve the quality of a patient's life in addition to reducing the treatment cost. Therefore, the design and development of diagnostic tool for in vivo and in vitro monitoring of DA is of considerable clinical and pharmacological importance. In recent decades, a large number of techniques have been established for DA detection, including chromatography coupled to mass spectrometry, spectroscopic approaches, and electrochemical (EC) methods. These methods are effective, but most of them still have some drawbacks such as consuming time, effort, and money. Added to that, sometimes they need complex procedures to obtain good sensitivity and suffer from low selectivity due to interference from other biological species such as uric acid (UA) and ascorbic acid (AA). Advanced materials can offer remarkable opportunities to overcome drawbacks in conventional DA sensors. This review aims to explain challenges related to DA detection using different techniques, and to summarize and highlight recent advancements in materials used and approaches applied for several sensor surface modification for the monitoring of DA. Also, it focuses on the analytical features of the EC and optical-based sensing techniques available.
    Matched MeSH terms: Optics and Photonics*
  3. Poh AH, Adikan FRM, Moghavvemi M
    Med Biol Eng Comput, 2020 Jun;58(6):1159-1175.
    PMID: 32319030 DOI: 10.1007/s11517-019-02077-9
    The study and applications of in vivo skin optics have been openly documented as early as the year 1954, or possibly earlier. To date, challenges in analyzing the complexities of this field remain, with wide scopes requiring more scrutiny. Recent advances in spectroscopic research and multivariate analytics allow a closer look into applications potentially for detecting or monitoring diseases. One of the challenges in this field is in establishing a reference for applications which correspond to certain bandwidths. This article reviews the scope on past research on skin spectroscopy, and the clinical aspects which have or may have applications on disease detection or enhancing diagnostics. A summary is supplied on the technicalities surrounding the measurements reported in literature, focused towards the wavelength-dependent applications in themes central to the respective research. Analytics on the topology of the papers' data cited in this work is also provided for a statistical perspective. In short, this paper strives to immediately inform the reader with possible applications via the spectroscopic devices at hand. Graphical Abstract .
    Matched MeSH terms: Optics and Photonics/instrumentation; Optics and Photonics/methods*
  4. Hambali NA, Mahdi MA, Al-Mansoori MH, Abas AF, Saripan MI
    Opt Express, 2009 Jul 06;17(14):11768-75.
    PMID: 19582091
    We have investigated the characteristics of Brillouin-Erbium fiber laser (BEFL) with variation of Erbium-doped fiber amplifier (EDFA) locations in a ring cavity configuration. Three possible locations of the EDFA in the laser cavity have been studied. The experimental results show that the location of EDFA plays vital role in determining the output power and the tuning range. Besides the Erbium gain, Brillouin gain also contributes to the performance of the BEFL. By placing the EDFA next to the Brillouin gain medium (dispersion compensating fiber), the Brillouin pump signal is amplified thereby generating higher intensities of Brillouin Stokes line. This efficient process suppresses the free running self-lasing cavity modes from oscillating in cavity as a result of higher Stokes laser power and thus provide a wider tuning range. At the injected Brillouin pump power of 1.6 mW and the maximum 1480 nm pump power of 135 mW, the maximum Stokes laser power of 25.1 mW was measured and a tuning range of 50 nm without any self-lasing cavity modes was obtained.
    Matched MeSH terms: Optics and Photonics
  5. Rifat AA, Mahdiraji GA, Chow DM, Shee YG, Ahmed R, Adikan FR
    Sensors (Basel), 2015;15(5):11499-510.
    PMID: 25996510 DOI: 10.3390/s150511499
    We propose a surface plasmon resonance (SPR) sensor based on photonic crystal fiber (PCF) with selectively filled analyte channels. Silver is used as the plasmonic material to accurately detect the analytes and is coated with a thin graphene layer to prevent oxidation. The liquid-filled cores are placed near to the metallic channel for easy excitation of free electrons to produce surface plasmon waves (SPWs). Surface plasmons along the metal surface are excited with a leaky Gaussian-like core guided mode. Numerical investigations of the fiber's properties and sensing performance are performed using the finite element method (FEM). The proposed sensor shows maximum amplitude sensitivity of 418 Refractive Index Units (RIU-1) with resolution as high as 2.4 × 10(-5) RIU. Using the wavelength interrogation method, a maximum refractive index (RI) sensitivity of 3000 nm/RIU in the sensing range of 1.46-1.49 is achieved. The proposed sensor is suitable for detecting various high RI chemicals, biochemical and organic chemical analytes. Additionally, the effects of fiber structural parameters on the properties of plasmonic excitation are investigated and optimized for sensing performance as well as reducing the sensor's footprint.
    Matched MeSH terms: Optics and Photonics
  6. Maidur SR, Patil PS, Katturi NK, Soma VR, Ai Wong Q, Quah CK
    J Phys Chem B, 2021 Apr 22;125(15):3883-3898.
    PMID: 33830758 DOI: 10.1021/acs.jpcb.1c01243
    The structural, thermal, linear, and femtosecond third-order nonlinear optical (NLO) properties of two pyridine-based anthracene chalcones, (2E)-1-(anthracen-9-yl)-3-(pyridin-2-yl)prop-2-en-1-one (2PANC) and (2E)-1-(anthracen-9-yl)-3-(pyridin-3-yl)prop-2-en-1-one (3PANC), were investigated. These two chalcones were synthesized following the Claisen-Schmidt condensation method. Optically transparent single crystals were achieved using a slow evaporation solution growth technique. The presence of functional groups in these molecules was established by Fourier transform infrared and NMR spectroscopic data. The detailed solid-state structure of both chalcones was determined from the single-crystal X-ray diffraction data. Both crystals crystallized in the centrosymmetric triclinic space group P1̅ with the nuance of unit cell parameters. The crystals (labeled as 2PANC and 3PANC) have been found to be transparent optically [in the entire visible spectral region] and were found to be thermally stable up to 169 and 194 °C, respectively. The intermolecular interactions were investigated using the Hirshfeld surface analysis, and the band structures (highest occupied molecular orbital-lowest unoccupied molecular orbital, excited-state energies, global chemical reactivity descriptors, and molecular electrostatic potentials) were studied using density functional theory (DFT) techniques. The ultrafast third-order NLO properties were investigated using (a) Z-scan and (b) degenerate four-wave mixing (DFWM) techniques using ∼50 fs pulses at 800 nm (1 kHz, ∼4 mJ) from a Ti:sapphire laser amplifier. Two-photon-assisted reverse saturable absorption, self-focusing nonlinear refraction, optical limiting, and optical switching behaviors were witnessed from the Z-scan data. 3PANC demonstrated a stronger two-photon absorption coefficient, while 2PANC depicted a stronger nonlinear refractive index among the two. The time-resolved DFWM data demonstrated that the decay times of 2PANC and 3PANC were ∼162 and ∼180 fs, respectively. The second hyperpolarizability (γ) values determined by DFT, Z-scan, and DFWM were found to be in good correlation (with a magnitude of ∼10-34 esu). The ultrafast third-order NLO response, significant NLO properties, and thermal stability of these chalcones brands them as potential candidates for optical power limiting and switching applications.
    Matched MeSH terms: Optics and Photonics
  7. Shitu IG, Liew JYC, Talib ZA, Baqiah H, Awang Kechik MM, Ahmad Kamarudin M, et al.
    ACS Omega, 2021 Apr 27;6(16):10698-10708.
    PMID: 34056223 DOI: 10.1021/acsomega.1c00148
    A rapid, sustainable, and ecologically sound approach is urgently needed for the production of semiconductor nanomaterials. CuSe nanoparticles (NPs) were synthesized via a microwave-assisted technique using CuCl2·2H2O and Na2SeO3 as the starting materials. The role of the irradiation time was considered as the primary concern to regulate the size and possibly the shape of the synthesized nanoparticles. A range of characterization techniques was used to elucidate the structural and optical properties of the fabricated nanoparticles, which included X-ray diffraction, energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy, field emission scanning electron microscopy, Raman spectroscopy (Raman), UV-Visible diffuse reflectance spectroscopy (DRS), and photoluminescence spectroscopy (PL). The mean crystallite size of the CuSe hexagonal (Klockmannite) crystal structure increased from 21.35 to 99.85 nm with the increase in irradiation time. At the same time, the microstrain and dislocation density decreased from 7.90 × 10-4 to 1.560 × 10-4 and 4.68 × 10-2 to 1.00 × 10-2 nm-2, respectively. Three Raman vibrational bands attributed to CuSe NPs have been identified in the Raman spectrum. Irradiation time was also seen to play a critical role in the NP optical band gap during the synthesis. The decrease in the optical band gap from 1.85 to 1.60 eV is attributed to the increase in the crystallite size when the irradiation time was increased. At 400 nm excitation wavelength, a strong orange emission centered at 610 nm was observed from the PL measurement. The PL intensity is found to increase with an increase in irradiation time, which is attributed to the improvement in crystallinity at higher irradiation time. Therefore, the results obtained in this study could be of great benefit in the field of photonics, solar cells, and optoelectronic applications.
    Matched MeSH terms: Optics and Photonics
  8. Jasvinder S, Khang TF, Sarinder KK, Loo VP, Subrayan V
    Eye (Lond), 2011 Jun;25(6):717-24.
    PMID: 21394115 DOI: 10.1038/eye.2011.28
    To assess the agreement of the optical low-coherence reflectometry (OLCR) device LENSTAR LS900 with partial coherence interferometry (PCI) device IOLMaster and applanation and immersion ultrasound biometry.
    Matched MeSH terms: Optics and Photonics/methods*
  9. Hamzah HH, Yusof NA, Salleh AB, Bakar FA
    Sensors (Basel), 2011;11(8):7302-13.
    PMID: 22164018 DOI: 10.3390/s110807302
    Fabrication of a test strip for detection of benzoic acid was successfully implemented by immobilizing tyrosinase, phenol and 3-methyl-2-benzothiazolinone hydrazone (MBTH) onto filter paper using polystyrene as polymeric support. The sensing scheme was based on the decreasing intensity of the maroon colour of the test strip when introduced into benzoic acid solution. The test strip was characterized using optical fiber reflectance and has maximum reflectance at 375 nm. It has shown a highly reproducible measurement of benzoic acid with a calculated RSD of 0.47% (n = 10). The detection was optimized at pH 7. A linear response of the biosensor was obtained in 100 to 700 ppm of benzoic acid with a detection limit (LOD) of 73.6 ppm. At 1:1 ratio of benzoic acid to interfering substances, the main interfering substance is boric acid. The kinetic analyses show that, the inhibition of benzoic is competitive inhibitor and the inhibition constant (K(i)) is 52.9 ppm. The activity of immobilized tyrosinase, phenol, and MBTH in the test strip was fairly sustained during 20 days when stored at 3 °C. The developed test strip was used for detection of benzoic acid in food samples and was observed to have comparable results to the HPLC method, hence the developed test strip can be used as an alternative to HPLC in detecting benzoic acid in food products.
    Matched MeSH terms: Optics and Photonics
  10. Abdi MM, Abdullah LC, Sadrolhosseini AR, Mat Yunus WM, Moksin MM, Tahir PM
    PLoS One, 2011;6(9):e24578.
    PMID: 21931763 DOI: 10.1371/journal.pone.0024578
    A new sensing area for a sensor based on surface plasmon resonance (SPR) was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI) conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU) were obtained for PPy-CHI film due to a specific binding of chitosan with Pb(2+) and Hg(2+) ions. The Pb(2+) ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb(2+) compared to Hg(2+). The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system.
    Matched MeSH terms: Optics and Photonics
  11. Ahmad H, Shahi S, Harun SW
    Opt Express, 2009 Jan 05;17(1):203-7.
    PMID: 19129889
    A multi-wavelength laser comb is demonstrated using a nonlinear effect in a backward pumped Bismuth-based Erbium-doped fiber (Bi-EDF) for the first time. It uses a ring cavity resonator scheme containing a 215 cm long highly nonlinear Bi-EDF, optical isolators, polarisation controller and 10 dB output coupler. The laser generates more than 10 lines of optical comb with a line spacing of approximately 0.41 nm at 1615.5 nm region using 146 mW of 1480 nm pump power.
    Matched MeSH terms: Optics and Photonics
  12. Chung KM
    Optom Vis Sci, 1993 Mar;70(3):228-33.
    PMID: 8483585
    Studies of optical defocus on refractive development and ocular growth in animals are presented and discussed in relation to the accommodation hypothesis. None of these studies fully support the accommodation hypothesis. The problems encountered in these studies are also discussed.
    Matched MeSH terms: Optics and Photonics
  13. Haron S, Ray AK
    Med Eng Phys, 2006 Dec;28(10):978-81.
    PMID: 17018258
    A three layer waveguiding silicon dioxide (SiO(2))/silicon nitride (Si(3)N(4))/SiO(2) structure on silicon substrate was proposed as an optically efficient biosensor for calibration of heavy metal ions in drinking water. The catalytic activities of urease and acetylcholine esterase (AchE) were inhibited by the presence of cadmium (Cd(2+)) and lead (Pb(2+)) ions. The detection limit as low as 1 ppb was achieved by employing the technique of total reflection at the interface between the Si(3)N(4) core and composite polyelectrolyte self-assembled (PESA) membranes containing cyclotetrachromotropylene (CTCT) as an indicator.
    Matched MeSH terms: Optics and Photonics
  14. Junaid M, Md Khir MH, Witjaksono G, Ullah Z, Tansu N, Saheed MSM, et al.
    Molecules, 2020 Sep 14;25(18).
    PMID: 32937975 DOI: 10.3390/molecules25184217
    In recent years, the field of nanophotonics has progressively developed. However, constant demand for the development of new light source still exists at the nanometric scale. Light emissions from graphene-based active materials can provide a leading platform for the development of two dimensional (2-D), flexible, thin, and robust light-emitting sources. The exceptional structure of Dirac's electrons in graphene, massless fermions, and the linear dispersion relationship with ultra-wideband plasmon and tunable surface polarities allows numerous applications in optoelectronics and plasmonics. In this article, we present a comprehensive review of recent developments in graphene-based light-emitting devices. Light emissions from graphene-based devices have been evaluated with different aspects, such as thermal emission, electroluminescence, and plasmons assisted emission. Theoretical investigations, along with experimental demonstration in the development of graphene-based light-emitting devices, have also been reviewed and discussed. Moreover, the graphene-based light-emitting devices are also addressed from the perspective of future applications, such as optical modulators, optical interconnects, and optical sensing. Finally, this review provides a comprehensive discussion on current technological issues and challenges related to the potential applications of emerging graphene-based light-emitting devices.
    Matched MeSH terms: Optics and Photonics
  15. Singh M, Dahalan A
    Br J Ophthalmol, 1987 Nov;71(11):850-3.
    PMID: 3689737
    A total of 94 patients underwent extracapsular cataract extraction and insertion of Sinsky style two-loop posterior chamber intraocular lenses. Forty-six eyes received a standard power IOL and 48 eyes were given a preoperatively calculated IOL. A significant difference was found in the two groups with regard to the postoperative refractive error and uncorrected visual acuity.
    Matched MeSH terms: Optics and Photonics
  16. Strout G, Russell SD, Pulsifer DP, Erten S, Lakhtakia A, Lee DW
    Ann Bot, 2013 Oct;112(6):1141-8.
    PMID: 23960046 DOI: 10.1093/aob/mct172
    BACKGROUND AND AIMS: Blue-green iridescence in the tropical rainforest understorey sedge Mapania caudata creates structural coloration in its leaves through a novel photonic mechanism. Known structures in plants producing iridescent blues consist of altered cellulose layering within cell walls and in special bodies, and thylakoid membranes in specialized plastids. This study was undertaken in order to determine the origin of leaf iridescence in this plant with particular attention to nano-scale components contributing to this coloration.

    METHODS: Adaxial walls of leaf epidermal cells were characterized using high-pressure-frozen freeze-substituted specimens, which retain their native dimensions during observations using transmission and scanning microscopy, accompanied by energy-dispersive X-ray spectroscopy to identify the role of biogenic silica in wall-based iridescence. Biogenic silica was experimentally removed using aqueous Na2CO3 and optical properties were compared using spectral reflectance.

    KEY RESULTS AND CONCLUSIONS: Blue iridescence is produced in the adaxial epidermal cell wall, which contains helicoid lamellae. The blue iridescence from cell surfaces is left-circularly polarized. The position of the silica granules is entrained by the helicoid microfibrillar layers, and granules accumulate at a uniform position within the helicoids, contributing to the structure that produces the blue iridescence, as part of the unit cell responsible for 2 ° Bragg scatter. Removal of silica from the walls eliminated the blue colour. Addition of silica nanoparticles on existing cellulosic lamellae is a novel mechanism for adding structural colour in organisms.

    Matched MeSH terms: Optics and Photonics
  17. Abdullah J, Ahmad M, Heng LY, Karuppiah N, Sidek H
    Anal Bioanal Chem, 2006 Nov;386(5):1285-92.
    PMID: 17031625
    The stacked-film immobilization of 3-methyl-2-benzothiazolinone hydrazone (MBTH) in hybrid nafion/sol-gel silicate film and horseradish peroxidase (HRP) in chitosan, performed in order to allow the determination of phenolic compounds, was investigated via an optical method. The stacked films were deposited onto a microscope glass slide by a spin-coating technique. The quinone or free radical product formed by the enzymatic reactions of phenolic compounds interacts with MBTH to form azo-dye products, which can be measured spectrophotometrically at a wavelength of 500 nm. The color intensity of the product was found to increase in proportion to the phenolic concentration after 5 min of exposure. The response of the biosensor was linear over concentration ranges of 0.025-0.500, 0.010-0.070 and 0.050-0.300 mM for guaiacol, resorcinol and o-cresol, respectively, and gave detection limits of 0.010, 0.005 and 0.012 mM. The sensor exhibited good sensitivity and stability for at least two months.
    Matched MeSH terms: Optics and Photonics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links