Displaying publications 21 - 40 of 52 in total

Abstract:
Sort:
  1. Yusof Nurhayati, Abdul Manaf Ali
    MyJurnal
    Many researchers have focused chitosan as a source of potential bioactive material during the past few decades. However, chitosan has several drawbacks to be utilised in biological applications, including poor solubility under physiological conditions. Therefore, a new interest has recently emerged on partially hydrolysed chitosan, chitosan oligosaccharides (COS). In this study, degradation of chitosan was performed by Cellulase from Trichoderma reesei® 1.5L and Response Surface Methodology (RSM) were employed to optimize the hydrolysis temperature, pH, enzyme concentration and substrate concentration. Optimization of cellulase T. reesei® using central composite design (CCD) was to obtain optimum parameters and all the factors showed significant effects (p˂0.05). The maximum response, Celluclast® activity (1.268 U) was obtained by assaying the process at 49.79oC, pH 4.5, 3% (v/w) of enzyme concentration and 25% (w/v) concentration of chitosan for 24 hours.
    Matched MeSH terms: Oligosaccharides
  2. MyJurnal
    This research was carried out to determine the fructooligosaccharides content in local honey samples, namely the wild Malaysian Tualang honey and common wild honey obtained from Tapah, Perak and a commercial Tualang honey. Local wild honeys were found to contain a higher concentration of fructooligosaccharides (FOS) compared to the commercial Tualang honey. The FOS quantified from local wild honeys was inulobiose, kestose and nystose. Nystoses were found at a very low amount in the commercial Tualang honey. The effects of honey on the growth of Bifidobacterium longum BB 536 were investigated. Both wild and commercial honey samples including FOS standard were found to support the growth of B. longum. The pH value of the skim milk + honey inoculated with the probiotic strain decreases as expected. Addition of honey was found to support the growth of B. longum BB 536.
    Matched MeSH terms: Oligosaccharides
  3. Mookiah S, Sieo CC, Ramasamy K, Abdullah N, Ho YW
    J Sci Food Agric, 2014 Jan 30;94(2):341-8.
    PMID: 24037967 DOI: 10.1002/jsfa.6365
    In view of a worldwide attempt to restrict or ban the use of antibiotics as growth promoters in animal production, probiotics, prebiotics and combinations of both, as synbiotics, have been suggested as potential alternatives. In this study, the effects of a prebiotic (isomalto-oligosaccharides, IMO), a multi-strain probiotic (consisting of 11 Lactobacillus strains), and a combination of these dietary additives as a synbiotic on the performance, caecal bacterial populations and concentrations of caecal volatile fatty acids and non-volatile fatty acids of broiler chickens were evaluated.
    Matched MeSH terms: Oligosaccharides/pharmacology*
  4. Sabiha-Hanim S, Noor MA, Rosma A
    Bioresour Technol, 2011 Jan;102(2):1234-9.
    PMID: 20797853 DOI: 10.1016/j.biortech.2010.08.017
    Oil palm (Elaeis guineensis Jacq.) is one of the most important commercial crops for the production of palm oil, which generates 10.88 tons of oil palm fronds per hectare of plantation as a by-product. In this study, oil palm frond fibres were subjected to an autohydrolysis treatment using an autoclave, operated at 121 °C for 20-80 min, to facilitate the separation of hemicelluloses. The hemicellulose-rich solution (autohydrolysate) was subjected to further hydrolysis with 4-16 U of mixed Trichoderma viride endo-(1,4)-β-xylanases (EC 3.2.1.8) per 100 mg of autohydrolysate. Autoclaving of palm fronds at 121°C for 60 min (a severity factor of 2.40) recovered 75% of the solid residue, containing 57.9% cellulose and 18% Klason lignin, and an autohydrolysate containing 14.94% hemicellulose, with a fractionation efficiency of 49.20%. Subsequent enzymatic hydrolysis of the autohydrolysate with 8 U of endoxylanase at 40 °C for 24 h produced a solution containing 17.5% xylooligosaccharides and 25.6% xylose. The results clearly indicate the potential utilization of oil palm frond, an abundantly available lignocellulosic biomass for the production of xylose and xylooligosaccharides which can serve as functional food ingredients.
    Matched MeSH terms: Oligosaccharides/biosynthesis*
  5. Fung WY, Woo YP, Liong MT
    J Agric Food Chem, 2008 Sep 10;56(17):7910-8.
    PMID: 18686970 DOI: 10.1021/jf801567j
    Four strains of probiotics were evaluated for their alpha-galactosidase activity. Lactobacillus acidophilus FTCC 0291 displayed the highest specific alpha-galactosidase activity and was thus selected to be optimized in soy whey medium supplemented with seven nitrogen sources. The first-order model showed that meat extract, vegetable extract, and peptone significantly (P < 0.05) influenced the growth of L. acidophilus. The second-order polynomial regression estimated that maximum growth was obtained from the combination of 7.25% (w/v) meat extract, 4.7% (w/v) vegetable extract, and 6.85% (w/v) peptone. The validation experiment showed that response surface methodology was reliable with a variation of only 1.14% from the actual experimental data. Increased utilization of oligosaccharides and reducing sugars contributed to increased growth of L. acidophilus in the soy whey medium. This was accompanied by increased production of short-chain fatty acids and a decrease in pH.
    Matched MeSH terms: Oligosaccharides/metabolism
  6. Shuhaimi M, Kabeir BM, Yazid AM, Nazrul Somchit M
    J Appl Microbiol, 2009 Jan;106(1):191-8.
    PMID: 19054238 DOI: 10.1111/j.1365-2672.2008.03991.x
    This study demonstrated the optimum growth of Bifidobacterium pseudocatenulatum G4 with prebiotics via statistical model.
    Matched MeSH terms: Oligosaccharides/metabolism
  7. Ahmad N, Zakaria MR, Mohd Yusoff MZ, Fujimoto S, Inoue H, Ariffin H, et al.
    Molecules, 2018 May 30;23(6).
    PMID: 29848973 DOI: 10.3390/molecules23061310
    The present work aimed to investigate the pretreatment of oil palm mesocarp fiber (OPMF) in subcritical H₂O-CO₂ at a temperature range from 150⁻200 °C and 20⁻180 min with CO₂ pressure from 3⁻5 MPa. The pretreated solids and liquids from this process were separated by filtration and characterized. Xylooligosaccharides (XOs), sugar monomers, acids, furans and phenols in the pretreated liquids were analyzed by using HPLC. XOs with a degree of polymerization X2⁻X4 comprising xylobiose, xylotriose, xylotetraose were analyzed by using HPAEC-PAD. Enzymatic hydrolysis was performed on cellulose-rich pretreated solids to observe xylose and glucose production. An optimal condition for XOs production was achieved at 180 °C, 60 min, 3 MPa and the highest XOs obtained was 81.60 mg/g which corresponded to 36.59% of XOs yield from total xylan of OPMF. The highest xylose and glucose yields obtained from pretreated solids were 29.96% and 84.65%, respectively at cellulase loading of 10 FPU/g-substrate.
    Matched MeSH terms: Oligosaccharides/chemistry*
  8. Kimura Y, Maeda M, Kimupa M, Lai OM, Tan SH, Hon SM, et al.
    Biosci Biotechnol Biochem, 2002 Apr;66(4):820-7.
    PMID: 12036055
    A basic glycoprotein, which was recognized by IgE from oil palm pollinosis patients, has been purified from oil palm pollen (Elaeis guineensis Jacq.), which is a strong allergen and causes severe pollinosis in Malaysia and Singapore. Soluble proteins were extracted from defatted palm pollen with both Tris-HCl buffer (pH 7.8) and Na-acetate buffer (pH 4.0). The allergenic glycoprotein was purified from the total extract to homogeneity with 0.4% yield by a combination of DEAE- and CM-cellulose, SP-HPLC, and gel filtration. The purified oil palm pollen glycoprotein with molecular mass of 31 kDa was recognized by the beta1-2 xylose specific antibody, suggesting this basic glycoprotein bears plant complex type N-glycan(s). The palm pollen basic glycoprotein, designated Ela g Bd 31 K, was recognized by IgE of palm pollinosis patients, suggesting Ela g Bd 31 K should be one of the palm pollen allergens. The preliminary structural analysis of N-glycans linked to glycoproteins of palm pollens showed that the antigenic N-glycans having alpha1-3 fucose and alpha1-2 xylose residues (GlcNAc(2 to approximately 0)Man3Xyl1Fuc(1 to approximately 0)GlcNAc2) actually occur on the palm pollen glycoproteins, in addition to the high-mannose type structures (Man(9 to approximately 5)GlcNAc2).
    Matched MeSH terms: Oligosaccharides/chemistry*
  9. Misson M, Du X, Jin B, Zhang H
    Enzyme Microb Technol, 2016 Mar;84:68-77.
    PMID: 26827776 DOI: 10.1016/j.enzmictec.2015.12.008
    Functional nanomaterials have been pursued to assemble nanobiocatalysts since they can provide unique hierarchical nanostructures and localized nanoenvironments for enhancing enzyme specificity, stability and selectivity. Functionalized dendrimer-like hierarchically porous silica nanoparticles (HPSNs) was fabricated for assembling β-galactosidase nanobiocatalysts for bioconversion of lactose to galacto-oligosaccharides (GOS). The nanocarrier was functionalized with amino (NH2) and carboxyl (COOH) groups to facilitate enzyme binding, benchmarking with non-functionalized HPSNs. Successful conjugation of the functional groups was confirmed by FTIR, TGA and zeta potential analysis. HPSNs-NH2 showed 1.8-fold and 1.1-fold higher β-galactosidase adsorption than HPSNs-COOH and HPSNs carriers, respectively, with the highest enzyme adsorption capacity of 328mg/g nanocarrier at an initial enzyme concentration of 8mg/ml. The HPSNs-NH2 and β-galactosidase assembly (HPSNs-NH2-Gal) demonstrated to maintain the highest activity at all tested enzyme concentrations and exhibited activity up to 10 continuous cycles. Importantly, HPSNs-NH2-Gal was simply recycled through centrifugation, overcoming the challenging problems of separating the nanocarrier from the reaction medium. HPSNs-NH2-Gal had distinguished catalytic reaction profiles by favoring transgalactosylation, enhancing GOS production of up to 122g/l in comparison with 56g/l by free β-galactosidase. Furthermore, it generated up to 46g/l GOS at a lower initial lactose concentration while the free counterpart had negligible GOS production as hydrolysis was overwhelmingly dominant in the reaction system. Our research findings show the amino-functionalized HPSNs can selectively promote the enzyme activity of β-galactosidase for transgalactosylation, which is beneficial for GOS production.
    Matched MeSH terms: Oligosaccharides/biosynthesis
  10. Matin MM, Nath AR, Saad O, Bhuiyan MM, Kadir FA, Abd Hamid SB, et al.
    Int J Mol Sci, 2016 Aug 27;17(9).
    PMID: 27618893 DOI: 10.3390/ijms17091412
    Benzyl α-l-rhamnopyranoside 4, obtained by both conventional and microwave assisted glycosidation techniques, was subjected to 2,3-O-isopropylidene protection to yield compound 5 which on benzoylation and subsequent deprotection of isopropylidene group gave the desired 4-O-benzoylrhamnopyranoside 7 in reasonable yield. Di-O-acetyl derivative of benzoate 7 was prepared to get newer rhamnopyranoside. The structure activity relationship (SAR) of the designed compounds was performed along with the prediction of activity spectra for substances (PASS) training set. Experimental studies based on antimicrobial activities verified the predictions obtained by the PASS software. Protected rhamnopyranosides 5 and 6 exhibited slight distortion from regular ¹C₄ conformation, probably due to the fusion of pyranose and isopropylidene ring. Synthesized rhamnopyranosides 4-8 were employed as test chemicals for in vitro antimicrobial evaluation against eight human pathogenic bacteria and two fungi. Antimicrobial and SAR study showed that the rhamnopyranosides were prone against fungal organisms as compared to that of the bacterial pathogens. Interestingly, PASS prediction of the rhamnopyranoside derivatives 4-8 were 0.49 < Pa < 0.60 (where Pa is probability 'to be active') as antibacterial and 0.65 < Pa < 0.73 as antifungal activities, which showed significant agreement with experimental data, suggesting rhamnopyranoside derivatives 4-8 were more active against pathogenic fungi as compared to human pathogenic bacteria thus, there is a more than 50% chance that the rhamnopyranoside derivative structures 4-8 have not been reported with antimicrobial activity, making it a possible valuable lead compound.
    Matched MeSH terms: Oligosaccharides/chemistry*
  11. Lee S, Katya K, Hamidoghli A, Hong J, Kim DJ, Bai SC
    Fish Shellfish Immunol, 2018 Dec;83:283-291.
    PMID: 30217508 DOI: 10.1016/j.fsi.2018.09.031
    This study evaluated the synergistic effects of dietary Bacillus subtilis WB60 and mannanoligosaccharide (MOS) in juvenile Japanese eel, Anguilla japonica. Seven treatment diets were formulated to contain three different levels of B. subtilis (0.0, 0.5, and 1.0 × 107 CFU/g diet denoted as BS0, BS0.5, and BS1, respectively) with two MOS levels (0 and 5 g/kg diet denoted as M0 and M5, respectively), and one diet with oxytetracycline (OTC) at 5 g/kg diet. Each diet (BS0M0 (CON), BS0M5, BS0.5M0, BS0.5M5, BS1M0, BS1M5, and OTC) was fed to triplicate groups of 20 fish averaging 9.00 ± 0.11 g (mean ± SD) for eight weeks. Average weight gain, feed efficiency, specific growth rate and protein efficiency ratio of fish fed the BS0.5M5 and BS1M5 diets were significantly higher than those of fish fed CON, BS0.5M0 and OTC diets (P  0.05). Therefore, the results for growth performance, non-specific immune responses, intestinal morphology, and disease resistance demonstrated that supplementation of B. subtilis at 0.5 × 107 CFU/g diet and mannanoligosaccharide at 5 g/kg diet could have beneficial synergistic effects in Japanese eel. The isolated probiotic from eel and the selected prebiotic could lead to the development of a specific and potential synbiotic in Japanese eel aquaculture.
    Matched MeSH terms: Oligosaccharides/pharmacology*
  12. McJarrow P, Radwan H, Ma L, MacGibbon AKH, Hashim M, Hasan H, et al.
    Nutrients, 2019 Oct 08;11(10).
    PMID: 31597293 DOI: 10.3390/nu11102400
    Human milk oligosaccharides (HMOs), phospholipids (PLs), and gangliosides (GAs) are components of human breast milk that play important roles in the development of the rapidly growing infant. The differences in these components in human milk from the United Arab Emirates (UAE) were studied in a cross-sectional trial. High-performance liquid chromatography‒mass spectrometry was used to determine HMO, PL, and GA concentrations in transitional (5-15 days) and mature (at 6 months post-partum) breast milk of mothers of the United Arab Emirates (UAE). The results showed that the average HMO (12 species), PL (7 species), and GA (2 species) concentrations quantified in the UAE mothers' transitional milk samples were (in mg/L) 8204 ± 2389, 269 ± 89, and 21.18 ± 11.46, respectively, while in mature milk, the respective concentrations were (in mg/L) 3905 ± 1466, 220 ± 85, and 20.18 ± 9.75. The individual HMO concentrations measured in this study were all significantly higher in transitional milk than in mature milk, except for 3 fucosyllactose, which was higher in mature milk. In this study, secretor and non-secretor phenotype mothers showed no significant difference in the total HMO concentration. For the PL and GA components, changes in the individual PL and GA species distribution was observed between transitional milk and mature milk. However, the changes were within the ranges found in human milk from other regions.
    Matched MeSH terms: Oligosaccharides/analysis*
  13. Erejuwa OO, Sulaiman SA, Wahab MS
    Molecules, 2011 Dec 28;17(1):248-66.
    PMID: 22205091 DOI: 10.3390/molecules17010248
    Evidence shows that honey improves glycemic control in diabetes mellitus. Besides its hypoglycemic effect, studies indicate that honey ameliorates lipid abnormalities in rats and humans with diabetes. The majority of these studies do not examine the mechanisms by which honey ameliorates glycemic and/or lipid derangements. The gut microbiota is now recognized for its ability to increase energy harvest from the diet and alter lipid metabolism of the host. Recently available data implicate a causal role of these gut microbes in the pathophysiology of obesity, insulin resistance, and diabetes mellitus. In this review, we present some of the latest findings linking gut microbiota to pathogenesis of obesity, insulin resistance, and diabetes mellitus. The review also underlines data that demonstrate the beneficial effects of oligosaccharides on various abnormalities commonly associated with these disorders. Based on the similarities of some of these findings with those of honey, together with the evidence that honey contains oligosaccharides, we hypothesize that oligosaccharides present in honey might contribute to the antidiabetic and other health-related beneficial effects of honey. We anticipate that the possibility of oligosaccharides in honey contributing to the antidiabetic and other health-related effects of honey will stimulate a renewed research interest in this field.
    Matched MeSH terms: Oligosaccharides/metabolism*; Oligosaccharides/pharmacology
  14. Rezaei S, Faseleh Jahromi M, Liang JB, Zulkifli I, Farjam AS, Laudadio V, et al.
    Poult Sci, 2015 Oct;94(10):2414-20.
    PMID: 26240398 DOI: 10.3382/ps/pev216
    This study examined the prebiotic effects of oligosaccharides extract from palm kernel expeller (OligoPKE) on growth performance, cecal microbiota and immune response of broiler chickens. A total of ninety 1-day-old broiler chicks (Cobb-500) were randomly allocated to three treatment groups of six pens (replicates) with five birds per pen. Dietary treatments were: (i) basal diet as control, (ii) basal diet plus 0.5% OligoPKE, and (iii) basal diet plus 1% OligoPKE. Birds growth traits (ADG, ADFI and G:F) were measured during the starter (1-21 day), finisher (22-35 day) and the entire experimental periods. Blood and cecal digesta samples were collected from chickens at 21 and 35 days of age (DOA). Microbial quantification of the digesta samples, white blood cells including heterophil, lymphocyte, monocyte, eosinophil, basophil counts and immunoglobulin (IgA and IgM) were also determined. OligoPKE had no effect on ADG and ADFI throughout the study period, but chickens fed OligoPKE supplemented diet had better (P < 0.05) G:F during finisher and overall rearing periods. Supplementing OligoPKE did not significantly alter the birds' microbiota of the cecal digesta. At 21 DOA, blood IgA concentration increased significantly when birds fed 1% OligoPKE in diet recorded compared to the control treatment. Similar observations were also recorded in birds at 35 DOA. Hematological data showed that heterophil and basophil counts of chickens fed OligoPKE supplement were lower than those in control group at 21 DOA. Our findings suggested that OligoPKE improved immune responses in broiler chickens, especially at younger age when the immune system is not still fully developed.
    Matched MeSH terms: Oligosaccharides/administration & dosage; Oligosaccharides/pharmacology*
  15. Sarbini SR, Kolida S, Deaville ER, Gibson GR, Rastall RA
    Br J Nutr, 2014 Oct 28;112(8):1303-14.
    PMID: 25196744 DOI: 10.1017/S0007114514002177
    The energy-salvaging capacity of the gut microbiota from dietary ingredients has been proposed as a contributing factor for the development of obesity. This knowledge generated interest in the use of non-digestible dietary ingredients such as prebiotics to manipulate host energy homeostasis. In the present study, the in vitro response of obese human faecal microbiota to novel oligosaccharides was investigated. Dextrans of various molecular weights and degrees of branching were fermented with the faecal microbiota of healthy obese adults in pH-controlled batch cultures. Changes in bacterial populations were monitored using fluorescent in situ hybridisation and SCFA concentrations were analysed by HPLC. The rate of gas production and total volume of gas produced were also determined. In general, the novel dextrans and inulin increased the counts of bifidobacteria. Some of the dextrans were able to alter the composition of the obese human microbiota by increasing the counts of Bacteroides-Prevotella and decreasing those of Faecalibacterium prausnitzii and Ruminococcus bromii/R. flavefaciens. Considerable increases in SCFA concentrations were observed in response to all substrates. Gas production rates were similar during the fermentation of all dextrans, but significantly lower than those during the fermentation of inulin. Lower total gas production and shorter time to attain maximal gas production were observed during the fermentation of the linear 1 kDa dextran than during the fermentation of the other dextrans. The efficacy of bifidobacteria to ferment dextrans relied on the molecular weight and not on the degree of branching. In conclusion, there are no differences in the profiles between the obese and lean human faecal fermentations of dextrans.
    Matched MeSH terms: Oligosaccharides/metabolism*; Oligosaccharides/therapeutic use; Oligosaccharides/chemistry
  16. Misson M, Dai S, Jin B, Chen BH, Zhang H
    J Biotechnol, 2016 Mar 20;222:56-64.
    PMID: 26876609 DOI: 10.1016/j.jbiotec.2016.02.014
    The nanoenvironment of nanobiocatalysts, such as local hydrophobicity, pH and charge density, plays a significant role in optimizing the enzymatic selectivity and specificity. In this study, Kluyveromyces lactis β-galactosidase (Gal) was assembled onto polystyrene nanofibers (PSNFs) to form PSNF-Gal nanobiocatalysts. We proposed that local hydrophobicity on the nanofiber surface could expel water molecules so that the transgalactosylation would be preferable over hydrolysis during the bioconversion of lactose, thus improve the galacto-oligosaccharides (GOS) yield. PSNFs were fabricated by electro-spinning and the operational parameters were optimized to obtain the nanofibers with uniform size and ordered alignment. The resulting nanofibers were functionalized for enzyme immobilization through a chemical oxidation method. The functionalized PSNF improved the enzyme adsorption capacity up to 3100mg/g nanofiber as well as enhanced the enzyme stability with 80% of its original activity. Importantly, the functionalized PSNF-Gal significantly improved the GOS yield and the production rate was up to 110g/l/h in comparison with 37g/l/h by free β-galactosidase. Our research findings demonstrate that the localized nanoenvironment of the PSNF-Gal nanobiocatalysts favour transgalactosylation over hydrolysis in lactose bioconversion.
    Matched MeSH terms: Oligosaccharides
  17. Nawawi KNM, Belov M, Goulding C
    Eur J Nutr, 2020 Aug;59(5):2237-2248.
    PMID: 31520160 DOI: 10.1007/s00394-019-02074-6
    INTRODUCTION: There is growing evidence that a diet low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAP) improves symptoms in irritable bowel syndrome (IBS) patients. We aimed to retrospectively investigate the effects of this diet in Irish IBS cohort over a 12-month follow-up period, including after re-introduction of the high FODMAP foods.

    METHODS: All the tertiary referrals seen by an FODMAP-trained dietician were reviewed (2013-2016). Patients were evaluated for IBS symptoms by a questionnaire (four-point Likert scale). Subsequently, advice regarding the low FODMAP diet was given. Symptoms' response was assessed at 3-, 6-, and 12-month follow-up, by use of the same questionnaire. Re-introduction of high FODMAP foods was aimed to commence at the subsequent follow-up.

    RESULTS: A total of 164 patients were identified. Thirty-seven patients were excluded due to failure to attend for follow-up. Hundred and twenty-seven patients (77% patients, of which 85% were female) completed the initial 3-month follow-up. Forty-five percent (74/164) and twenty-five percent (41/164) of the patients had continued follow-up at 6 and 12 months, respectively. Of the 127 patients who returned for follow-up, their commonest baseline symptoms were lethargy (92%), bloating (91%), flatulence (91%), and abdominal pain (89%). All symptoms were significantly improved at the initial follow-up (p 

    Matched MeSH terms: Oligosaccharides
  18. Munir MB, Hashim R, Abdul Manaf MS, Nor SA
    Trop Life Sci Res, 2016 Aug;27(2):111-25.
    PMID: 27688855 MyJurnal DOI: 10.21315/tlsr2016.27.2.9
    This study used a two-phase feeding trial to determine the influence of selected dietary prebiotics and probiotics on growth performance, feed utilisation, and morphological changes in snakehead (Channa striata) fingerlings as well as the duration of these effects over a post-experimental period without supplementation. Triplicate groups of fish (22.46 ±0.17 g) were raised on six different treatment diets: three prebiotics (0.2% β-glucan, 1% galacto-oligosaccharides [GOS], 0.5% mannan-oligosaccharides [MOS]), two probiotics (1% live yeast [Saccharomyces cerevisiae] and 0.01% Lactobacillus acidophilus [LBA] powder) and a control (unsupplemented) diet; there were three replicates for each treatment. All diets contained 40% crude protein and 12% crude lipid. Fish were fed to satiation three times daily. No mortalities were recorded during Phase 1; however, 14% mortality was documented in the control and prebiotic-amended fish during Phase 2. At the end of Phase 1, growth performance and feed utilisation were significantly higher (p<0.05) in the LBA-treated fish, followed by live yeast treatment, compared with all other diets tested. The performance of fish on the three prebiotic diets were not significantly different from one another but was significantly higher than the control diet. During Phase 2 (the post-feeding phase), fish growth continued until the 6th week for the probiotic-based diets but levelled off after four weeks for the fish fed the prebiotic diets. The feed conversion ratio (FCR) was higher in all treatments during the post-feeding period. The hepatosomatic index (HSI) did not differ significantly among the tested diets. The visceral somatic index (VSI) and intraperitoneal fat (IPF) were highest in the LBA-based diet and the control diet, respectively. The body indices were significantly different (p<0.05) between Phases 1 and 2. This study demonstrates that probiotic-based diets have a more positive influence on the growth, feed utilisation, and survival of C. striata fingerlings compared with supplementation with prebiotics.
    Matched MeSH terms: Oligosaccharides
  19. Cao Y, Ma ZF, Zhang H, Jin Y, Zhang Y, Hayford F
    Foods, 2018 Apr 12;7(4).
    PMID: 29649123 DOI: 10.3390/foods7040059
    The human gut is densely populated with diverse microbial communities that are essential to health. Prebiotics and fiber have been shown to possess the ability to modulate the gut microbiota. One of the plants being considered as a potential source of prebiotic is yacon. Yacon is an underutilized plant consumed as a traditional root-based fruit in South America. Yacon mainly contains fructooligosaccharides (FOS) and inulin. Therefore, it has bifidogenic benefits for gut health, because FOS are not easily broken down by digestive enzymes. Bioactive chemical compounds and extracts isolated from yacon have been studied for their various nutrigenomic properties, including as a prebiotic for intestinal health and their antimicrobial and antioxidant effects. This article reviewed scientific studies regarding the bioactive chemical compounds and nutrigenomic properties of extracts and isolated compounds from yacon. These findings may help in further research to investigate yacon-based nutritional products. Yacon can be considered a potential prebiotic source and a novel functional food. However, more detailed epidemiological, animal, and human clinical studies, particularly mechanism-based and phytopharmacological studies, are lacking for the development of evidence-based functional food products.
    Matched MeSH terms: Oligosaccharides
  20. Jayasimhan S, Yap NY, Roest Y, Rajandram R, Chin KF
    Clin Nutr, 2013 Dec;32(6):928-34.
    PMID: 23561636 DOI: 10.1016/j.clnu.2013.03.004
    Probiotics is an emerging therapeutic agent which may alleviate the symptoms of constipation. We evaluated the effectiveness of microbial cell preparation (Hexbio(®)) containing fructooligosaccharide, Bifidobacterium and Lactobacillus in improving stool frequency and symptoms of chronic constipation.
    Matched MeSH terms: Oligosaccharides/administration & dosage
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links