The aim of this work is to study the effect of hydrocolloids; guar gum (GG), xanthan gum (XG) and carboxymethyl cellulose (CMC) on the physicochemical properties, microbiological quality and sensory properties in order to investigate the potential of applying fermented cassava (tapai ubi) in ice cream. Fermented cassava ice cream (FCI) incorporated with the three types of hydrocolloid was prepared and the protein content, pH value, overrun, colour, hardness, microstructure, FTIR spectrum and sensory acceptance of all samples were determined. Fermented cassava ice cream incorporated with XG showed the highest protein content (14.88%), pH value (pH 6.07), and overrun value (4.27%) as compared to the fermented cassava ice cream incorporated with GG and CMC. Meanwhile, ice cream incorporated with GG possessed the highest L* (94.43) and hardness (3693.15 g) value as compared to XG and CMC. The microstructure study showed that the difference in uniformity at the interface obtained with different types of the hydrocolloids added demonstrated the effect of fat absorption at the air interfaces. The FTIR spectrum investigated indicated that the addition of the fermented cassava to FCI had increased the OH group in the ice cream as compared to the control. All samples were microbial safe as the total plate counts in all samples were below the standard as prescribed in Food Act 1983 with no presence of E. coli . In conclusion, fermented cassava ice cream with XG showed the good quality in terms of its pH value, overrun, total plate count and overall acceptability.
Silver Oxide (Ag2O)-Guar gum nanocomposite was fabricated via a simple sonochemical co-precipitation method. The obtained photocatalyst was characterized with various techniques such as X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, UV-vis diffuse reflectance spectroscopy, photoluminescence spectroscopy, scanning electron microscopy and transmission electron microscopy along with energy dispersion X-ray spectroscopy. The findings have demonstrated that Ag2O nanoparticles are spherical of 5-20 nm and were dispersed on the surface of polysaccharide guar gum to form Ag2O-guar gum nanocomposite. The as-synthesized nanocomposite was enacted as a competent photocatalyst for the reduction of nitrobenzene and oxidation of benzyl alchohol. The conversion efficiency for the reduction of nitrobenzene was 96 % with the addition of sodium borohydride, and the conversion of benzyl alcohol was 98 %. The highly efficient photocatalytic activity was due to the exceedingly dispersed Ag2O-guar gum nanocomposite where effective separation rate of energy driven electron-hole pairs and stronger light absorption occurs. The possible mechanism of the reactions was implicated in understanding the active species involved in the photocatalytic study.
Okra plant particularly its fruit is highly mucilage which composed of pectin and high content of carbohydrate. Byproducts of okra plant such as leaves and matured fruits will be discarded whenever the young fruits are harvested which eventually leads to environmental pollution. Those byproducts have potential to become plant-based alternative for bovine and pork related gelatin. This study aimed to determine the gel formation of pectin extracted from okra plant byproducts particularly the leaves, pulp (skin without seeds) and seeds. Pectin was extracted using a sequential extraction with the applications of hot buffer (HB) and hot buffer with chelating agents (CH). CH extraction gave the highest pectin yield (>40%) compared to HB and DA. The HB fraction harbored highly purified pectin due to high anhydro uronic acid content and degree of esterification. The highest pectin yield was extracted from seeds with an overall fraction yield of 86%, followed by the leaves (75%) and pulp (71%). The pectin was blended with konjac glucomannan (KG) in 5.0:1.6 ratio to form gel and stored for 16 - 18hr at 4°C ± 1.0. The gel formed using HB extraction was found to have significantly lower (p < 0.05) gel strength than HB with CH extraction. This study concluded that HB and CH pectin extracts derived from okra leaves, pulp and seeds have good potential to become gelling agent.
The aims of the project were to determine the glycaemic and insulin responses of non-insulin dependent diabetic patients (NIDDM) to 3 traditional Malaysian meals compared to oral glucose, and to determine whether guar gum would affect these responses. Patients with NIDDM were tested with 75 g oral glucose and three common breakfast meals of the three main ethnic groups of Malaysia. When compared with the oral glucose group, significantly by lower blood glucose responses were seen at 90 and 120 minutes post prandial for nasi lemak (p<0.05) and at 60, 75 and 90 minutes for mee sup (p<0.05). No significant difference was seen for roti telur. There was no significant difference in plasma glucose at any time point of the study when the three test meals were compared with each other. Addition of 5g granulated guar gum mixed with water taken prior to the glucose significantly lowered the plasma glucose at 60, 120 and 150 minutes postprandially (p<0.05). Similarly for the test meals, guar gum significantly lowered plasma glucose concentration between 15 and 45 minutes (p<0.03) postprandial for nasi lemak and between 15 and 30 minutes (p<0.03) for mee sup but not with roti telur. With addition of guar gum, there was no significant change of insulin responses with the three meals but a significant increase was seen at 30 minutes (p<0.02) after ingestion of glucose.
The present research is based on the fabrication preparation of CS/PVA/GG blended hydrogel with nontoxic tetra orthosilicate (TEOS) for sustained paracetamol release. Different TEOS percentages were used because of their nontoxic behavior to study newly designed hydrogels' crosslinking and physicochemical properties. These hydrogels were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and wetting to determine the functional, surface morphology, hydrophilic, or hydrophobic properties. The swelling analysis in different media, degradation in PBS, and drug release kinetics were conducted to observe their response against corresponding media. The FTIR analysis confirmed the components added and crosslinking between them, and surface morphology confirmed different surface and wetting behavior due to different crosslinking. In various solvents, including water, buffer, and electrolyte solutions, the swelling behaviour of hydrogel was investigated and observed that TEOS amount caused less hydrogel swelling. In acidic pH, hydrogels swell the most, while they swell the least at pH 7 or higher. These hydrogels are pH-sensitive and appropriate for controlled drug release. These hydrogels demonstrated that, as the ionic concentration was increased, swelling decreased due to decreased osmotic pressure in various electrolyte solutions. The antimicrobial analysis revealed that these hydrogels are highly antibacterial against Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram negative (Pseudomonas aeruginosa and Escherichia coli) bacterial strains. The drug release mechanism was 98% in phosphate buffer saline (PBS) media at pH 7.4 in 140 min. To analyze drug release behaviour, the drug release kinetics was assessed against different mathematical models (such as zero and first order, Higuchi, Baker-Lonsdale, Hixson, and Peppas). It was found that hydrogel (CPG2) follows the Peppas model with the highest value of regression (R2 = 0.98509). Hence, from the results, these hydrogels could be a potential biomaterial for wound dressing in biomedical applications.
It is a challenging task to develop active biomacromolecular wound dressing materials that are biocompatible and possesses antibacterial properties against the bacterial strains that cause severe skin disease. This work is focused on the preparation of a biocompatible and degradable hydrogel for wound dressing application using arabinoxylan (ARX) and guar gum (GG) natural polymers. Fourier transform infrared spectroscopy (FT-IR) confirmed that both ARX and GG interacted well with each other, and their interactions further increased with the addition of crosslinker tetraethyl orthosilicate. Scanning electron microscope (SEM) micrographs showed uniform porous morphologies of the hydrogels. The porous morphologies and uniform interconnected pores are attributed to the increased crosslinking of the hydrogel. Elastic modulus, tensile strength, and fracture strain of the hydrogels significantly improved (from ATG-1 to ATG-4) with crosslinking. Degradability tests showed that hydrogels lost maximum weight in 7 days. All the samples showed variation in swelling with pH. Maximum swelling was observed at pH 7. The hydrogel samples showed good antibacterial activity against Pseudomonas aeruginosa (Gram-negative) and Staphylococcus aureus (Gram-positive) in PBS, good drug release profile (92% drug release), and nontoxic cellular behavior. The cells not only retained their cylindrical morphologies onto the hydrogel but were also performing their normal activities. It is, therefore, believed that as-developed hydrogel could be a potential material for wound dressing application.
Invasive aspergillosis (IA) in immunocompromised host is a major infectious disease leading to reduce the survival rate of world population. Aspergillus niger is a causative agent causing IA. Cassia surattensis plant is commonly used in rural areas to treat various types of disease. C. surattensis flower extract was evaluated against the systemic aspergillosis model in this study. Qualitative measurement of fungal burden suggested a reduction pattern in the colony forming unit (CFU) of lung, liver, spleen and kidney for the extract treated group. Galactomannan assay assessment showed a decrease of fungal load in the treatment and positive control group with galactomannan index (GMI) value of 1.27 and 0.25 on day 28 but the negative control group showed high level of galactomannan in the serum with GMI value of 3.58. Histopathology examinations of the tissues featured major architecture modifications in the tissues of negative control group. Tissue reparation and recovery from infection were detected in extract treated and positive control group. Time killing fungicidal study of A. niger revealed dependence of the concentration of C. surattensis flower extract.
Novel carboxymethyl fenugreek galactomannan (CFG)-gellan gum (GG)-calcium silicate (CS) composite beads were developed for controlled glimepiride (GLI) delivery. CFG having degree of carboxymethylation of 0.71 was synthesized and characterized by FTIR, DSC and XRD analyses. Subsequently, GLI-loaded hybrids were accomplished by ionotropic gelation technique employing Ca+2/Zn+2/Al+3 ions as cross-linkers. All the formulations demonstrated excellent drug encapsulation efficiency (DEE, 48-97%) and sustained drug release behaviour (Q8h, 62-94%). These quality attributes were remarkably influenced by polymer-blend (GG:CFG) ratios, cross-linker types and CS inclusion. The drug release profile of the optimized formulation (F-6) was best fitted in zero-order model with anomalous diffusion driven mechanism. It also conferred excellent ex vivo mucoadhesive property and considerable hypoglycemic effect in streptozotocin-induced diabetic rats. Furthermore, the beads were characterized for drug-excipients compatibility, drug crystallinity, thermal behaviour and surface morphology. Thus, the developed hybrid matrices are appropriate for controlled delivery of GLI for Type 2 diabetes management.