Displaying publications 21 - 36 of 36 in total

Abstract:
Sort:
  1. Bello RO, Abdullah MA, Abd Majid R, Chin VK, Abd Rachman Isnadi MF, Ibraheem ZO, et al.
    Malar J, 2019 Dec 19;18(1):434.
    PMID: 31856836 DOI: 10.1186/s12936-019-3070-x
    BACKGROUND: The immune modulating potential of IL-35 in multiple human disorders has been reported. Consequent upon the recognition of inflammatory cytokine activation and its preponderance for mediating pathology during malaria infection, the study aimed to characterize the expression and functional contribution(s) of IL-35 in Plasmodium berghei (strain ANKA) infected mice.

    METHODS: Plasmodium berghei infection in male ICR mice was used as the rodent model of choice. The time course of IL-35 expression in the systemic circulation and tissues of P. berghei infected mice as well as their healthy control counterparts was assessed by enzyme linked immunosorbent assay and immunohistochemistry respectively. The effect of modulating IL-35 by recombinant IL-35 protein or neutralizing anti-Epstein-Barr virus-induced gene 3 antibody on the cytokine environment during P. berghei infection was assessed by flow cytometry. Furthermore, the influence of modulating IL-35 on histopathological hallmarks of malaria and disease progression was evaluated.

    RESULTS: Interleukin-35 was significantly up regulated in serum and tissues of P. berghei infected mice and correlated with parasitaemia. Neutralization of IL-35 significantly enhanced the release of IFN-γ, decreased the expression of IL-6 and decreased parasitaemia patency. Neutralization of IL-35 was also associated with a tendency towards increased survival as well as the absence of pathological features associated with malaria infection unlike recombinant IL-35 protein administration which sustained a normal course of infection and unfavourable malaria associated histological outcomes in P. berghei infected mice.

    CONCLUSION: These results indicate the involvement of IL-35 in P. berghei induced malaria infection. IL-35 neutralization strategies may represent viable therapeutic modalities beneficial for the resolution of malaria infection.

    Matched MeSH terms: Malaria/immunology*
  2. Muh F, Ahmed MA, Han JH, Nyunt MH, Lee SK, Lau YL, et al.
    Sci Rep, 2018 04 10;8(1):5781.
    PMID: 29636493 DOI: 10.1038/s41598-018-23728-1
    The Plasmodium falciparum apical asparagine (Asn)-rich protein (AARP) is one of malarial proteins, and it has been studied as a candidate of malaria subunit vaccine. Basic characterization of PvAARP has been performed with a focus on its immunogenicity and localization. In this study, we further analyzed the immunogenicity of PvAARP, focusing on the longevity of the antibody response, cross-species immunity and invasion inhibitory activity by using the primate malaria parasite Plasmodium knowlesi. We found that vivax malaria patient sera retained anti-PvAARP antibodies for at least one year without re-infection. Recombinant PvAARP protein was strongly recognized by knowlesi malaria patients. Antibody raised against the P. vivax and P. knowlesi AARP N-termini reacted with the apical side of the P. knowlesi merozoites and inhibited erythrocyte invasion by P. knowlesi in a concentration-dependent manner, thereby suggesting a cross-species nature of anti-PvAARP antibody against PkAARP. These results can be explained by B cell epitopes predicted in conserved surface-exposed regions of the AARP N-terminus in both species. The long-lived anti-PvAARP antibody response, cross-reactivity, and invasion inhibitory activity of anti-PvAARP support a critical role of AARP during the erythrocyte invasion and suggest that PvAARP induces long-lived cross-species protective immunity against P. vivax and P. knowlesi.
    Matched MeSH terms: Malaria/immunology*
  3. Kumar GS, Mak JW, Lam PL, Tan MA, Lim PK
    PMID: 3129797
    Malarial antibodies in 80 patients were measured using the diffusion-in-gel enzyme linked immunosorbent assay (DIG-ELISA), enzyme-linked immunosorbent assay (ELISA) and the indirect fluorescent antibody (IFA) test. Good correlations were obtained between all three tests in terms of sensitivity and reliability. DIG-ELISA has the advantage of being a rapid diagnostic tool for the detection of malarial antibodies.
    Matched MeSH terms: Malaria/immunology
  4. Cheong FW, Lau YL, Fong MY, Mahmud R
    Am J Trop Med Hyg, 2013 May;88(5):835-40.
    PMID: 23509118 DOI: 10.4269/ajtmh.12-0250
    Plasmodium knowlesi is now known as the fifth Plasmodium species that can cause human malaria. The Plasmodium merozoite surface protein (MSP) has been reported to be potential target for vaccination and diagnosis of malaria. MSP-1(33) has been shown to be immunogenic and its T cell epitopes could mediate cellular immune protection. However, limited studies have focused on P. knowlesi MSP-133. In this study, an approximately 28-kDa recombinant P. knowlesi MSP-1(33) (pkMSP-1(33)) was expressed by using an Escherichia coli system. The purified pkMSP-1(33) reacted with serum samples of patients infected with P. knowlesi (31 of 31, 100%) and non-P. knowlesi malaria (27 of 28, 96.43%) by Western blotting. The pkMSP-1(33) also reacted with P. knowlesi (25 of 31, 80.65%) and non-P. knowlesi malaria sera (20 of 28, 71.43%) in an enzyme-linked immunosorbent assay (ELISA). Most of the non-malarial infection (49 of 52 in by Western blotting and 46 of 52 in the ELISA) and healthy donor serum samples (65 of 65 by Western blotting and ELISA) did not react with recombinant pkMSP-1(33).
    Matched MeSH terms: Malaria/immunology
  5. Gordon DM, Davis DR, Lee M, Lambros C, Harrison BA, Samuel R, et al.
    Am J Trop Med Hyg, 1991 Jul;45(1):49-56.
    PMID: 1867348
    Two hundred and seventy-five Orang Asli volunteers living in nine villages in the Pos Legap Valley of Perak State, peninsular Malaysia, participated in a prospective study designed to characterize the epidemiological, parasitological, and entomological characteristics of Plasmodium falciparum, P. vivax, and P. malariae malaria transmission. Prevalence rates for the three plasmodial species at initiation of the study ranged from 56% in the 0-4-year-old age group to 0% in individuals over the age of 40. Entomological surveys were conducted, enabling us to determine mosquito salivary gland-positive rates and entomological inoculation rates of 1.2 infectious mosquito bites per person per month for P. falciparum, 2.4 for P. vivax, and 0.3 for P. malariae. Cumulative incidence rates over the 16 weeks of the study, following radical cure of all volunteers, were 22.5% for P. falciparum, 12.7% for P. vivax, and 1.5% for P. malariae. The median baseline antibody titer against the immunodominant repetitive B cell epitope of P. falciparum or P. vivax circumsporozoite protein was significantly higher for volunteers who did not become parasitemic. Volunteers were selected for further study if they had evidence of being challenged with P. falciparum sporozoites during the study, based on a two-fold or greater increase in antibody titer against the immunodominant repetitive B cell epitope of the circumsporozoite protein. Resistance to infection was seen in six of 10 individuals who had high (greater than 25 OD units) baseline ELISA titers, compared with only three of 24 individuals who had low baseline ELISA titers (chi 2 P less than 0.02). A similar analysis for P. vivax did not show a significant correlation.
    Matched MeSH terms: Malaria/immunology
  6. Thomas V, Chit CW
    Trans R Soc Trop Med Hyg, 1980;74(1):73-6.
    PMID: 7001686
    Congenital malaria from Malaysia is reported here for the first time. It occurred in a baby boy born to a 16-year-old primigravida who contracted Plasmodium falciparum infection during pregnancy. She suffered malaria during the later stages of pregnancy and at parturition. The placenta was heavily infested with various asexual stages of P. falciparum. Gametocytes were not seen. Extensive search did not show other species. Cord blood showed very light infection with young trophozoites of P. falciparum. Serological studies using IFA technique showed specific IgG and IgM antibodies to P. falciparum in maternal cord and two early neonatal sera. These serum samples showed lower levels of IgG antibodies against P. vivax and P. malariae, but there were no specific IgM antibodies against these species. The value of specific IgM antibody in the diagnosis of congenital malaria is discussed.
    Matched MeSH terms: Malaria/immunology
  7. Aizuddin NNF, Ganesan N, Ng WC, Ali AH, Ibrahim I, Basir R, et al.
    Trop Biomed, 2020 Dec 01;37(4):1105-1116.
    PMID: 33612762 DOI: 10.47665/tb.37.4.1105
    Malaria is a life-threatening disease caused by the Plasmodium sp. parasite. Infection results in heightened pro-inflammatory response which contributes to the pathophysiology of the disease. To mitigate the overwhelming cytokine response, host-directed therapy is a plausible approach. Glycogen synthase kinase-3β (GSK3β), a serine/threonine kinase plays a pivotal role in the regulation of inflammatory response during pathogenic infections. The present study was conducted to investigate the chemo-suppressive and cytokine-modulating effects of insulin administration in malaria-infected mice and the involvement of GSK3β. Intraperitoneal administrations of 0.3 and 0.5 U/kg body weight insulin each for four consecutive days into Plasmodium berghei NK65 (PbN)-infected mice resulted in chemo-suppression exceeding 60% and improved median survival time of infected mice (20.5 days and 19 days respectively compared to 15.5 days for non-treated control). Western analysis revealed that pGSK3β (Ser9) intensity in brain samples from insulin-treated (0.3 and 0.5 U/kg body weight) infected mice each were 0.6 and 2.2 times respectively than that in control. In liver samples, pGSK3β (Ser9) intensity from insulin-treated infected mice were significantly higher (4.8 and 16.1 fold for 0.3 and 0.5 U/kg bw respectively) than that in control. Insulin administration decreased both brain and liver pNF-κB p65 (Ser536) intensities (to 0.8 and 0.6 times for 0.3 U/kg bw insulin; and to 0.2 and 0.1 times for 0.5 U/kg bw insulin respectively compared to control). Insulin treatment (0.5 U/kg bw) also significantly decreased the serum levels of pro-inflammatory cytokines (TNF-α (3.3 times) and IFN-γ (4.9 times)) whilst significantly increasing the levels of anti-inflammatory cytokines (IL-4 (4.9 fold) and IL-10 (2.1 fold)) in PbN-infected mice. Results from this study demonstrated that the cytokinemodulating effects of insulin at least in part involve inhibition of GSK3β and consequent inhibition of the activation of NF-κB p65 suggesting insulin as a potential adjunctive therapeutic for malaria.
    Matched MeSH terms: Malaria/immunology
  8. Priya SP, Sakinah S, Sharmilah K, Hamat RA, Sekawi Z, Higuchi A, et al.
    Acta Trop, 2017 Dec;176:206-223.
    PMID: 28823908 DOI: 10.1016/j.actatropica.2017.08.007
    Immuno-pathogenesis of leptospirosis can be recounted well by following its trail path from entry to exit, while inducing disastrous damages in various tissues of the host. Dysregulated, inappropriate and excessive immune responses are unanimously blamed in fatal leptospirosis. The inherent abilities of the pathogen and inabilities of the host were debated targeting the severity of the disease. Hemorrhagic manifestation through various mechanisms leading to a fatal end is observed when this disease is unattended. The similar vascular destructions and hemorrhage manifestations are noted in infections with different microbes in endemic areas. The simultaneous infection in a host with more than one pathogen or parasite is referred as the coinfection. Notably, common endemic infections such as leptospirosis, dengue, chikungunya, and malaria, harbor favorable environments to flourish in similar climates, which is aggregated with stagnated water and aggravated with the poor personal and environmental hygiene of the inhabitants. These factors aid the spread of pathogens and parasites to humans and potential vectors, eventually leading to outbreaks of public health relevance. Malaria, dengue and chikungunya need mosquitoes as vectors, in contrast with leptospirosis, which directly invades human, although the environmental bacterial load is maintained through other mammals, such as rodents. The more complicating issue is that infections by different pathogens exhibiting similar symptoms but require different treatment management. The current review explores different pathogens expressing specific surface proteins and their ability to bind with array of host proteins with or without immune response to enter into the host tissues and their ability to evade the host immune responses to invade and their affinity to certain tissues leading to the common squeal of hemorrhage. Furthermore, at the host level, the increased susceptibility and inability of the host to arrest the pathogens' and parasites' spread in different tissues, various cytokines accumulated to eradicate the microorganisms and their cellular interactions, the antibody dependent defense and the susceptibility of individual organs bringing the manifestation of the diseases were explored. Lastly, we provided a discussion on the immune trail path of pathogenesis from entry to exit to narrate the similarities and dissimilarities among various hemorrhagic fevers mentioned above, in order to outline future possibilities of prevention, diagnosis, and treatment of coinfections, with special reference to endemic areas.
    Matched MeSH terms: Malaria/immunology
  9. Lee M, Davis DR, Ballou WR, Folena-Wasserman G, Lewis GE
    Am J Trop Med Hyg, 1988 Dec;39(6):535-9.
    PMID: 3061309
    A seroepidemiologic survey of Plasmodium vivax and Plasmodium falciparum transmission was conducted in 94 Orang Asli children and adults. The prevalence of malaria was 46% in this population, and infections due to P. vivax and P. falciparum occurred with equal frequency. Multi-species infection was common, particularly in children less than 10 years of age. Circumsporozoite (CS) antibodies to P. vivax were detected by ELISA, using the recombinant protein NS181V20, in sera from 53-95% of all subjects in this study. The specificity of reactivity to NS181V20 was confirmed by immunofluorescence using air-dried sporozoites. CS antibodies to P. falciparum were present in less than 50% of the population less than 30 years of age. These data support further testing of this protein as a candidate vivax vaccine.
    Matched MeSH terms: Malaria/immunology
  10. Basir R, Hasballah K, Jabbarzare M, Gam LH, Abdul Majid AM, Yam MF, et al.
    Trop Biomed, 2012 Sep;29(3):405-21.
    PMID: 23018504 MyJurnal
    The involvement of interleukin-18 (IL-18) and the effects of modulating its release on the course of malaria infection were investigated using Plasmodium berghei ANKA infection in ICR mice as a model. Results demonstrated that plasma IL-18 concentrations in malarial mice were significantly elevated and positively correlated with the percentage parasitaemia development. Significant expressions of IL-18 were also observed in the brain, spleen and liver tissues. Slower development of parasitaemia was observed significantly upon inhibition and neutralization of IL-18, whereas faster development of parasitaemia was recorded when the circulating levels of IL-18 were further augmented during the infection. Inhibition and neutralization of IL-18 production also resulted in a significant decrease of plasma concentrations of pro-inflammatory cytokines (TNFα, IFNγ, IL-1α and IL-6), whereas the anti-inflammatory cytokine, IL-10, was significantly increased. Augmenting the release of IL- 18 during the infection on the other hand resulted in the opposite. Early mortality in malarial mice was also observed when the circulating levels of IL-18 were further augmented. Results proved the important role of IL-18 in immune response against malaria and suggest that IL-8 is pro-inflammatory in nature and may involve in mediating the severity of the infection through a pathway of elevating the pro-inflammatory cytokine and limiting the release of anti-inflammatory cytokine.
    Matched MeSH terms: Malaria/immunology*
  11. Hassan WRM, Basir R, Ali AH, Embi N, Sidek HM
    Trop Biomed, 2019 Sep 01;36(3):776-791.
    PMID: 33597499
    Malarial pathogenesis involves among others, uncontrolled or excessive cytokine production arising from dysregulated immune responses mounted by the host to eliminate the plasmodial parasite. The ubiquitous serine/threonine kinase, glycogen synthase kinase3β (GSK3β) is a crucial regulator of the balance between pro- and anti-inflammatory cytokine productions in the inflammatory response to pathogenic infections. Andrographolide, a bioactive compound in Andrographis paniculata, displays GSK3- inhibitory effects. A previous study elsewhere has shown that this compound has antimalarial activity but the molecular basis of its action is yet to be elucidated. Here we aimed to study the anti-malarial activity of andrographolide in a murine model of malarial infection to investigate whether its mechanism of action involves cytokine modulation and inhibition of GSK3β. Andrographolide showed strong and selective anti-plasmodial activity (IC50 = 13.70±0.71 µM; SI = 30.43) when tested against cultures of P. falciparum 3D7. Intraperitoneal administration of andrographolide (5 mg/kg body weight (bw)) into P. berghei NK65-infected ICR mice resulted in chemo-suppression of 60.17±2.12%, and significantly (P<0.05) improved median survival time of infected mice compared to nontreated control. In addition, andrographolide treatment significantly (P<0.05) decreased the level of serum pro-inflammatory cytokine, IFN-γ (1.4-fold) whilst the anti-inflammatory cytokines, IL-10 and IL-4 were increased 2.3- and 2.6-fold respectively. Western blot analyses revealed that andrographolide treatment of P. berghei NK65-infected mice resulted in an increased level of phosphorylated GSK3β (Ser9) in liver of infected mice. Andrographolide administration also decreased the levels of phosphorylated NF-κB p65 (Ser536) and phosphorylated Akt (Ser473) in liver of malaria- infected animals. Taken together, our findings demonstrate that the cytokine-modulating effect of andrographolide in experimental malarial infection involves at least in part inhibition of NF-κB activation as a consequence of GSK3β inhibition. Based on its cytokine-modulating effects, andrographolide is thus a plausible candidate for adjunctive therapy in malaria subject to clinical evaluations.
    Matched MeSH terms: Malaria/immunology
  12. De Silva JR, Lau YL, Fong MY
    PLoS One, 2016;11(7):e0158998.
    PMID: 27391270 DOI: 10.1371/journal.pone.0158998
    Malaria remains a major health threat in many parts of the globe and causes high mortality and morbidity with 214 million cases of malaria occurring globally in 2015. Recent studies have outlined potential diagnostic markers and vaccine candidates one of which is the merozoite surface protein (MSP)-3. In this study, novel recombinant Plasmodium knowlesi MSP-3 was cloned, expressed and purified in an Escherichia coli system. Subsequently, the recombinant protein was evaluated for its sensitivity and specificity. The recombinant pkMSP-3 protein reacted with sera from patients with P. knowlesi infection in both Western blot (61%) and ELISA (100%). Specificity-wise, pkMSP-3 did not react with healthy donor sera in either assay and only reacted with a few non-malarial parasitic patient sera in the ELISA assay (3 of 49). In conclusion, sensitivity and specificity of pkMSP-3 was found to be high in the ELISA and Western Blot assay and thus utilising both assays in tandem would provide the best sero-diagnostic result for P. knowlesi infection.
    Matched MeSH terms: Malaria/immunology*
  13. Herman LS, Fornace K, Phelan J, Grigg MJ, Anstey NM, William T, et al.
    PLoS Negl Trop Dis, 2018 Jun;12(6):e0006457.
    PMID: 29902183 DOI: 10.1371/journal.pntd.0006457
    BACKGROUND: Plasmodium knowlesi is the most common cause of malaria in Malaysian Borneo, with reporting limited to clinical cases presenting to health facilities and scarce data on the true extent of transmission. Serological estimations of transmission have been used with other malaria species to garner information about epidemiological patterns. However, there are a distinct lack of suitable serosurveillance tools for this neglected disease.

    METHODOLOGY/PRINCIPAL FINDINGS: Using in silico tools, we designed and expressed four novel P. knowlesi protein products to address the distinct lack of suitable serosurveillance tools: PkSERA3 antigens 1 and 2, PkSSP2/TRAP and PkTSERA2 antigen 1. Antibody prevalence to these antigens was determined by ELISA for three time-points post-treatment from a hospital-based clinical treatment trial in Sabah, East Malaysia (n = 97 individuals; 241 total samples for all time points). Higher responses were observed for the PkSERA3 antigen 2 (67%, 65/97) across all time-points (day 0: 36.9% 34/92; day 7: 63.8% 46/72; day 28: 58.4% 45/77) with significant differences between the clinical cases and controls (n = 55, mean plus 3 SD) (day 0 p<0.0001; day 7 p<0.0001; day 28 p<0.0001). Using boosted regression trees, we developed models to classify P. knowlesi exposure (cross-validated AUC 88.9%; IQR 86.1-91.3%) and identified the most predictive antibody responses.

    CONCLUSIONS/SIGNIFICANCE: The PkSERA3 antigen 2 had the highest relative variable importance in all models. Further validation of these antigens is underway to determine the specificity of these tools in the context of multi-species infections at the population level.

    Matched MeSH terms: Malaria/immunology
  14. Fornace KM, Herman LS, Abidin TR, Chua TH, Daim S, Lorenzo PJ, et al.
    PLoS Negl Trop Dis, 2018 Jun;12(6):e0006432.
    PMID: 29902171 DOI: 10.1371/journal.pntd.0006432
    BACKGROUND: Primarily impacting poor, rural populations, the zoonotic malaria Plasmodium knowlesi is now the main cause of human malaria within Malaysian Borneo. While data is increasingly available on symptomatic cases, little is known about community-level patterns of exposure and infection. Understanding the true burden of disease and associated risk factors within endemic communities is critical for informing evidence-based control measures.

    METHODOLOGY/PRINCIPAL FINDINGS: We conducted comprehensive surveys in three areas where P. knowlesi transmission is reported: Limbuak, Pulau Banggi and Matunggung, Kudat, Sabah, Malaysia and Bacungan, Palawan, the Philippines. Infection prevalence was low with parasites detected by PCR in only 0.2% (4/2503) of the population. P. knowlesi PkSERA3 ag1 antibody responses were detected in 7.1% (95% CI: 6.2-8.2%) of the population, compared with 16.1% (14.6-17.7%) and 12.6% (11.2-14.1%) for P. falciparum and P. vivax. Sero-prevalence was low in individuals <10 years old for P. falciparum and P. vivax consistent with decreased transmission of non-zoonotic malaria species. Results indicated marked heterogeneity in transmission intensity between sites and P. knowlesi exposure was associated with agricultural work (OR 1.63; 95% CI 1.07-2.48) and higher levels of forest cover (OR 2.40; 95% CI 1.29-4.46) and clearing (OR 2.14; 95% CI 1.35-3.40) around houses. Spatial patterns of P. knowlesi exposure differed from exposure to non-zoonotic malaria and P. knowlesi exposed individuals were younger on average than individuals exposed to non-zoonotic malaria.

    CONCLUSIONS/SIGNIFICANCE: This is the first study to describe serological exposure to P. knowlesi and associated risk factors within endemic communities. Results indicate community-level patterns of infection and exposure differ markedly from demographics of reported cases, with higher levels of exposure among women and children. Further work is needed to understand these variations in risk across a wider population and spatial scale.

    Matched MeSH terms: Malaria/immunology
  15. Lim PK, Mak JW, Yong HS
    PMID: 1298082
    Two monoclonal antibodies (MAbs), one produced against Plasmodium falciparum (PF-IG8) and the other against P. cynomolgi (PC-IE12) schizont antigens were used in a sandwich ELISA for the detection of circulating plasmodial antigens in sera of patients infected with either P. falciparum, P. vivax or P. malariae. The mean +/- SD optical density (OD) values for the normal control group using PF-108 and PC-1E12 were 0.351 +/- 0.036 and 0.205 +/- 0.044, respectively. Mean OD values for the three infected groups were found to be significantly higher than those of the normal control group for both MAbs. However, ELISA values for individual serum specimens did not correlate with the level of parasitemia in the infected blood. Using a cut-off point of mean OD +/- 3 SD of the normal control group as indicating a positive reading, the specificity of this assay with both MAbs was 100%. The sensitivity of the assay using PF-1G8 was 95% while that obtained with PC-1E12 was 98%.
    Matched MeSH terms: Malaria/immunology
  16. Müller-Sienerth N, Shilts J, Kadir KA, Yman V, Homann MV, Asghar M, et al.
    Malar J, 2020 Jan 17;19(1):31.
    PMID: 31952523 DOI: 10.1186/s12936-020-3111-5
    BACKGROUND: Malaria remains a global health problem and accurate surveillance of Plasmodium parasites that are responsible for this disease is required to guide the most effective distribution of control measures. Serological surveillance will be particularly important in areas of low or periodic transmission because patient antibody responses can provide a measure of historical exposure. While methods for detecting host antibody responses to Plasmodium falciparum and Plasmodium vivax are well established, development of serological assays for Plasmodium knowlesi, Plasmodium ovale and Plasmodium malariae have been inhibited by a lack of immunodiagnostic candidates due to the limited availability of genomic information.

    METHODS: Using the recently completed genome sequences from P. malariae, P. ovale and P. knowlesi, a set of 33 candidate cell surface and secreted blood-stage antigens was selected and expressed in a recombinant form using a mammalian expression system. These proteins were added to an existing panel of antigens from P. falciparum and P. vivax and the immunoreactivity of IgG, IgM and IgA immunoglobulins from individuals diagnosed with infections to each of the five different Plasmodium species was evaluated by ELISA. Logistic regression modelling was used to quantify the ability of the responses to determine prior exposure to the different Plasmodium species.

    RESULTS: Using sera from European travellers with diagnosed Plasmodium infections, antigens showing species-specific immunoreactivity were identified to select a panel of 22 proteins from five Plasmodium species for serological profiling. The immunoreactivity to the antigens in the panel of sera taken from travellers and individuals living in malaria-endemic regions with diagnosed infections showed moderate power to predict infections by each species, including P. ovale, P. malariae and P. knowlesi. Using a larger set of patient samples and logistic regression modelling it was shown that exposure to P. knowlesi could be accurately detected (AUC = 91%) using an antigen panel consisting of the P. knowlesi orthologues of MSP10, P12 and P38.

    CONCLUSIONS: Using the recent availability of genome sequences to all human-infective Plasmodium spp. parasites and a method of expressing Plasmodium proteins in a secreted functional form, an antigen panel has been compiled that will be useful to determine exposure to these parasites.

    Matched MeSH terms: Malaria/immunology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links