For a range of doses familiarly incurred in computed tomography (CT), study is made of the performance of Germanium (Ge)-doped fibre dosimeters formed into cylindrical and flat shapes. Indigenously fabricated 2.3 mol% and 6 mol% Ge-dopant concentration preforms have been used to produce flat- and cylindrical-fibres (FF and CF) of various size and diameters; an additional 4 mol% Ge-doped commercial fibre with a core diameter of 50 μm has also been used. The key characteristics examined include the linearity index f(d), dose sensitivity and minimum detectable dose (MDD), the performance of the fibres being compared against that of lithium-fluoride based TLD-100 thermoluminescence (TL) dosimeters. For doses in the range 2-40 milligray (mGy), delivered at constant potential of 120 kilovoltage (kV), both the fabricated and commercial fibres demonstrate supralinear behaviours at doses 4 mGy. In terms of dose sensitivity, all of the fibres show superior TL sensitivity when compared against TLD-100, the 2.3 mol% and 6 mol% Ge-doped FF demonstrating the greatest TL sensitivity at 84 and 87 times that of TLD-100. The TL yields for the novel Ge-doped silica glass render them appealing for use within the present medical imaging dose range, offering linearity at high sensitivity down to less than 2 mGy.
This paper presents the data on the optimisation and validation of a liquid chromatography-high-resolution mass spectrometry (LC-HRMS) to establish the presence of phosphodiesterase 5 (PDE5) inhibitors and their analogues as adulterants in instant coffee premixes. The method development data covered chromatographic optimisation for better analyte separation and isomeric resolution, mass spectrometry optimisation for high sensitivity and sample preparation optimisation for high extraction recovery (RE) and low matrix effect (ME). The validation data covered specificity, linearity, range, accuracy, limit of detection, limit of quantification, precisions, ME, and RE. The optimisation and validation data presented here is related to the article: "Determination of phosphodiesterase 5 (PDE5) inhibitors in instant coffee premixes using liquid chromatography-high-resolution mass spectrometry (LC-HRMS)" Mohd Yusop et al., 2019.
This article demonstrates the first application of a copper-based porous coordination polymer (BTCA-P-Cu-CP) as a carbon paste electrode (CPE) modifier for the detection of malathion. The electrochemical behavior of BTCA-P-Cu-CP/CPE was explored using cyclic voltammetry (CV) while chrono-amperometry methods were applied for the analytical evaluation of the sensor performance. Under optimized conditions, the developed sensor exhibited high reproducibility, stability, and wide dynamic range (0.6-24 nM) with the limits of detection and sensitivity equal to 0.17 nM and 5.7 µAnMcm-1, respectively, based on inhibition signal measurement. Furthermore, the presence of common coexisting interfering species showed a minor change in signals (<4.4%). The developed sensor has been applied in the determination of malathion in spiked vegetable extracts. It exhibited promising results in term of fast and sensitive determination of malathion in real samples at trace level with recoveries of 91.0 to 104.4%. (RSDs < 5%, n = 3). A comparison of the two studied techniques showed that the HPLC technique is unable to detect malathion when the concentration is lower than 1.8 µM while 0.006 µM is detected with appropriate RSDs 0.2-5.2% (n = 3) by amperometric method. Due to the high sensitivity and selectivity, this new electrochemical sensor will be useful for monitoring trace malathion in real samples.
Study has been made of the thermoluminescence (TL) yield of various glass-based commercial kitchenware (Reko-China, Skoja-France, Godis-China, Glass Tum-Malaysia, Lodrat-France). Interest focuses on their potential for retrospective dosimetry. Use was made of a60Co gamma-ray irradiator, delivering doses in the range 2-10 Gy. Results for the various media show all the glassware brands to yield linearity of response against dose, with a lower limit of detection of ∼0.06 and ∼0.08 Gy for loose and compact powdered samples. Among all of the brands under study, the Lodrat glassware provides the greatest sensitivity, at 6.0 E+02 nC g-1 Gy-1 and 1.5E+03 nC g-1 Gy-1 for compact- and loose-powdered forms respectively. This is sufficiently sensitive to allow its use as a TL material for accident dosimetry (2 Gy being the threshold dose for the onset of a number of deterministic biological effects, including skin erythema and sterility). Energy Dispersive X-ray (EDX) analyses have been conducted, showing the presence of a number of impurities (including C, O, Na, Mg, Al, Si, Ca and Br). Fading of the irradiated glasses show the amount of better than 3% and 5% of the stored energy for both loose and compact powdered samples within 9 days post irradiation. As such, commercial kitchenware glass has the potential to act as relatively good TL material for gamma radiation dosimetry at accident levels. This is the first endeavour reporting the TL properties of low cost commercial kitchenware glasses for gamma-ray doses in the few Gy range, literature existing for doses from 8 Gy to 200 Gy.
Polyoctopamine (POct), an amine-functionalised non-conducting polymer, as the transducer layer in an electrochemical biosensor, is presented. This polymer offers versatile covalent coupling either through thiol linker conjugation, carboxyl or aldehyde functional groups without the requirement of pre- or post-surface activation. The colorectal cancer biomarker carcinoembryonic antigen (CEA) was selected as the target analyte, whilst an antibody and a synthetic binding protein, an Affimer, were used as distinct bioreceptors to demonstrate the versatility of polyoctopamine as a transducer polymer layer for oriented immobilisation of the bioreceptors. The electrodeposited polymer layer was characterised using cyclic voltammetry, electrochemical impedance spectroscopy, and on-sensor chemiluminescent blotting. The performance of optimised POct-based biosensors were tested in spiked human serum. Results showed that the electropolymerisation of octopamine on screen printed gold electrode generates a thin polymer film with low resistance. Close proximity of the immobilised bioreceptors to the transducer layer greatly enhanced the sensitivity detection. The sensitivity of the smaller monomeric bioreceptor (Affimer, 12.6 kDa) to detect CEA was comparable to the dimeric antibody (150 kDa) with limit of detection at 11.76 fM which is significantly lower than the basal clinical levels of 25 pM. However, the Affimer-based sensor had a narrower dynamic range compared to the immunosensor (1-100 fM vs. 1 fM - 100 nM, respectively). All electrochemical measurements were done in less than 5 min with small sample volumes (10 μl). Hence, polyoctopamine features a simple fabrication of impedimetric biosensors using amine-functionalisation technique, provides rapid response time with enhanced sensitivity and label-free detection.
Herein, a rapid and sensitive current-volt measurement was developed for identifying the IS6110 DNA sequence to diagnose Mycobacterium tuberculosis (TB). An aminated capture probe was immobilized on a 1,1'-carbonyldiimidazole-functionalized interdigitated electrode (IDE) silica substrate, and the target sequence was detected by complementation. It was found that all tested concentrations displayed a higher response in current changes than the control, and the limit of detection was 10 fM. The sensitivity ranged from 1 to 10 fM. The control sequences with single-, triple-mismatch and noncomplementary sequences showed great discrimination. This rapid and easy DNA detection method helps to identify M. tuberculosis for early-stage diagnosis of TB.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants with toxic effects and adverse health impacts on general population. Several methods of extraction had been applied to extract PAHs from human blood samples such as solid phase extraction (SPE). The SPE represents one of the most common techniques for extraction and clean-up procedures as it needs low quantity of solvents with less manual efforts. Similarly, various analytical instruments like gas chromatography coupled to mass spectrometry (GC-MS) was used to measure the PAHs levels. Gas chromatog- raphy is a simple, fast, and very efficient method for solvents and small organic molecules. This review provides an overview of the measured concentrations of PAHs in human blood samples through the application of SPE and GC- MS during the last ten years. While these studies used various solvents, their application of SPE method and GC-MS revealed rewarding results about the determination of PAHs levels in the human samples.
Current developments in sensors and actuators are heralding a new era to facilitate things to happen effortlessly and efficiently with proper communication. On the other hand, Internet of Things (IoT) has been boomed up with er potential and occupies a wide range of disciplines. This study has choreographed to design of an algorithm and a smart data-processing scheme to implement the obtained data from the sensing system to transmit to the receivers. Technically, it is called "telediagnosis" and "remote digital monitoring," a revolution in the field of medicine and artificial intelligence. For the proof of concept, an algorithmic approach has been implemented for telediagnosis with one of the degenerative diseases, that is, Parkinson's disease. Using the data acquired from an improved interdigitated electrode, sensing surface was evaluated with the attained sensitivity of 100 fM (n = 3), and the limit of detection was calculated with the linear regression value coefficient. By the designed algorithm and data processing with the assistance of IoT, further validation was performed and attested the coordination. This proven concept can be ideally used with all sensing strategies for immediate telemedicine by end-to-end communications.
Fried and baked banana-based snacks are popular in South East Asia and banana chip is popular in
other countries, such as India, Indonesia, China, African countries, etc; these snacks may contain acrylamide in concentration which may be of concern due to its toxicity. This study was carried out to determine acrylamide concentration in popular banana based snacks in Malaysia using a modified method of gas chromatographymass spectrometry. The limit of detection and limit of quantitation of the modified method are 5 and 15 μg/kg, respectively. Acrylamide concentration of five types of Malaysian popular fried and baked banana based snacks from different local markets ranged from 74.0 to 7468.8 μg/ kg for banana fritter (pisang goreng), 28.9 to 243.7μg/kg for banana chips (kerepek pisang), 160.7 to 500.4 μg/kg for sweet banana chips (kerepek pisang manis), not detected to 154.4 μg/kg for banana cake (kek pisang) and 31.7 to 609.1 μg/kg for banana balls (cekodok pisang). Analysis of variance showed a significant difference (P
A simple and sensitive analytical method has been developed employing gas chromatography coupled with electron capture detector (GC-ECD), and validated for screening and quantification of 15 pesticide residues at trace levels in cabbage, broccoli, cauliflower, lettuce, celery, spinach, and mustard. The method consists of two steps, first, to determine the significance of each factor by Pareto chart followed by optimization of these significant factors using central composite design (CCD). Minitab statistical software was used for these multivariate experiments for the generation of 2(4-1) design and CCD matrices. The method evaluation was done by external standard calibration with linearity range between 0.5 and 3mg/kg, with correlation coefficient 0.99, limit of detection (LOD) ranges between 0.02 and 4.5ng/g, and limit of quantification (LOQ) ranges between 0.2 and 45ng/g. The average recovery was between 60% and 128%, with RSD 0.2-19.8%. The method was applied on real vegetable samples from Cameron Highlands.
Hollow fiber liquid-phase microextraction (HF-LPME) techniques coupled to chromatographic systems have been widely used for extraction and determination of diverse compounds. HF-LPME was able to provide better results in precision, accuracy, selectivity and enrichment factor, in addition to reduction of matrix effect and carry over. It is applicable within a wide pH range and compatible with most analytical instruments which enable the utilization of HF-LPME in a wide variety of applications. This review focused on the modified HF-LPME techniques, efficiency, comparison to other LPME methods and applications.
An artificial neural network (ANN) was applied for the determination of V(V) based on immobilized fatty hydroxamic acid (FHA) in poly(methyl methacrylate) (PMMA). Spectra obtained from the V(V)-FHA complex at single wavelengths was used as the input data for the ANN. The V(V)-FHA complex shows a limited linear dynamic range of V(V) concentration of 10 - 100 mg/ L. After training with ANN, the linear dynamic range was extended with low calibration error. A three layer feed forward neural network using backpropagation (BP) algorithm was employed in this study. The input layer consisted of single neurons, 30 neurons in hidden a layer and one output neuron was found appropriate for the multivariate calibration used. The network were trained up to 10000 epochs with 0.003 % learning rate. This reagent also provided a good analytical pedormance with reproducibility characters of the method yielding relative standard deviation (RSD) of 9.29% and 7.09% for V(V) at concentrations of 50 mg/ L and 200 mg/ L, respectively. The limit of detection of the method was 8.4 mg/ L.
This research was focused on the thermoluminescence (TL) response of commercially produced single-mode telecommunication optical fibre manufactured by INOCORP (Canada). The fibres were either in the form of pure silica (SiO2) or as SiO2 doped with Ge or Al at concentrations appropriate for total internal reflection, as required for telecommunication purposes. Each of these INOCORP fibres had a core diameter of 125 ± 0.1 μm. It was noted that dopant concentration was not included among the data provided in the accompanying product data sheet. A particularly important parameter for obtaining the highest TL yield in this study was the dopant concentration of the SiO2 fibre. The dopants tended to diffuse during the production of the optical fibre. To obtain this parameter, proton induced X-ray emission (PIXE) analysis was utilised. PIXE while having limited depth resolution could unambiguously identify elements and analyse trace elements with a detection limit approaching μg g–1. For Al-doped fibres, dopant concentrations in the range of 0.98 – 2.93 mol% had been estimated, the equivalent range for Ge-doped fibres was 0.53 – 0.71 mol%. A linear dose response was observed following 2.5 MeV proton irradiation for Ge- and Al-doped fibres for up to 7 min exposure.
Free light chains (FLCs) are tumour markers of monoclonal gammopathies. Detection of urinary FLC or also known as Bence-Jones protein through urinary protein and its immunofixation electrophoreses (UPE and uIFE, respectively) have been considered the gold standard for its biochemical diagnosis. This is mainly due to their superior detection limits compared to their counterpart investigations in serum. However, urinalysis is limited in many ways. The emergence of serum FLC assay with markedly improved detection limit circumvents many of these problems and has gained much importance in biochemical investigations of monoclonal gammopathies. Nevertheless, they are not without limitations. This review discusses the advantages and limitations of serum and urinary FLC assays.
Five tropical seaweeds, Kappaphycus alvarezii (Doty) Doty ex P.C. Silva, Padina australis Hauck, Sargassum binderi Sonder ex J. Agardh (syn. S. aquifolium (Turner) C. Agardh), Sargassum siliquosum J. Agardh and Turbinaria conoides (J. Agardh) Kützing, were incubated in seawater of pH 8.0, 7.8 (ambient), 7.6, 7.4 and 7.2, to study the effects of changing seawater pH on halocarbon emissions. Eight halocarbon species known to be emitted by seaweeds were investigated: bromoform (CHBr3), dibro-momethane (CH2Br2), iodomethane (CH3I), diiodomethane (CH2I2), bromoiodomethane (CH2BrI), bromochlorometh-ane (CH2BrCl), bromodichloromethane (CHBrCl2), and dibro-mochloromethane (CHBr2Cl). These very short-lived halocarbon gases are believed to contribute to stratospheric halogen concentrations if released in the tropics. It was observed that the seaweeds emit all eight halocarbons assayed, with the exception of K. alvarezii and S. binderi for CH2I2 and CH3I respectively, which were not measurable at the achievable limit of detection. The effect of pH on halocarbon emission by the seaweeds was shown to be species-specific and compound specific. The highest percentage changes in emissions for the halocarbons of interest were observed at the lower pH levels of 7.2 and 7.4 especially in Padina australis and Sargassum spp., showing that lower seawater pH causes elevated emissions of some halocarbon compounds. In general the seaweed least affected by pH change in terms of types of halocarbon emission, was P. australis. The commercially farmed seaweed K. alvarezii was very sensitive to pH change as shown by the high increases in most of the compounds in all pH levels relative to ambient. In terms of percentage decrease in maximum quantum yield of photosynthesis (Fv∕Fm) prior to and after incubation, there were no significant correlations with the various pH levels tested for all seaweeds. The correlation between percentage decrease in the maximum quantum yield of photosynthesis (Fv∕Fm) and halocarbon emission rates, was significant only for CH2BrCl emission by P. australis (r = 0.47; p ≤ 0.04), implying that photosynthesis may not be closely linked to halocarbon emissions by the seaweeds studied. Bromine was the largest contributor to the total mass of halogen emitted for all the seaweeds at all pH. The highest total amount of bromine emitted by K. alvarezii (an average of 98% of total mass of halogens) and the increase in the total amount of chlorine with decreasing seawater pH fuels concern for the expanding seaweed farming activities in the ASEAN region.
Preparation of selective magnetic adsorbents for dispersive micro-solid phase extraction often involves multi-step reactions which are time consuming. This study demonstrates a simplified method for the synthesis of a magnetic adsorbent, which is selective towards the adsorption of mercury(ii) ions (Hg2+). In this method, the incorporation of a metal capturing ligand (3-oxo-1,3-diphenylpropyl-2-(naphthalen-2-ylamino) ethylcarbamodithioate) and the coating of magnetic particles with silica gel was performed in a single step. This adsorbent was then used in solid-phase microextraction for the preconcentration of Hg2+ in water. In this study, a mercury analyzer was used to quantify the Hg2+. Under optimized conditions, the developed analytical method achieved a low detection limit (4.0 ng L-1), satisfactory enrichment factor (96.4) and wide linearity range (50.0-5000 ng L-1) with a good coefficient of determination (0.9985) and good repeatability (<7%). The preconcentration factor of this method was 100. This proposed method was also successfully utilized for the determination of Hg2+ in drinking water, tap water and surface water with good recovery (>91%) and high intra-day and inter-day precision.
Based on the concept of LEGO toys, a fiber probe analytical platform (FPAP) was developed as a powerful diagnostic tool offering higher sensitivity in detection of infectious agents compared to established methods. Using the form and the function of LEGO toys, this protocol describes a fiber-based, 96-well plate, which suspends a new class of chemically-designed, electrospun fibers within the assay. This clamping strategy allows both sides of the developed fiber mats to interact with biomolecules within the assay thus benefiting from the tailored chemical and physical properties of these fiber-based bioreceptors in attracting the biomolecules to the surface. The fabrication method of FPAP involves one-step electrospinning of the chemically designed fibers, 3D printing of the LEGO-like probing segments, and assembly of the device followed by ELISA procedure. FPAP follows the same principles of operation as that of a conventional enzyme linked immunosorbent assay (ELISA), therefore, it can be run by lab technicians, expert in ELISA. FPAP was used for early diagnosis of Dengue fever and provided an 8-fold higher sensitivity while the limit of detection (LOD) was recorded to be in femto-gram per milliliter range which is significantly low when compared to other existing techniques or conventional assay. This platform allows different types of paper/fiber bio-receptive platforms to be incorporated within the design that promises simultaneous recognition of multiple infectious agents.
A novel silver nanoparticles (Ag NPs)-based optical sensing probe has been developed for the detection of Japanese Encephalitis virus (JEV). Ag NPs were initially deposited onto amine functionalized glass slides. Subsequently, JEV antibodies were self-assembled onto surfaces of Ag NPs to form optical sensing probes. The detection of JEV antigen was observed via changes in light absorbance by Ag NPs upon occurrence of JEV antigen-antibody bindings. A highly sensitive and rapid optical sensing probe for JEV antigen with a detection limit of 12.8 ng/mL (for S/N ratio = 3) and an analysis assay time of 1 h had been demonstrated.
Large-scale food-borne outbreaks caused by Salmonella are rarely seen nowadays, thanks to the advanced nature of the medical system. However, small, localised outbreaks in certain regions still exist and could possess a huge threat to the public health if eradication measure is not initiated. This review discusses the progress of Salmonella detection approaches covering their basic principles, characteristics, applications, and performances. Conventional Salmonella detection is usually performed using a culture-based method, which is time-consuming, labour intensive, and unsuitable for on-site testing and high-throughput analysis. To date, there are many detection methods with a unique detection system available for Salmonella detection utilising immunological-based techniques, molecular-based techniques, mass spectrometry, spectroscopy, optical phenotyping, and biosensor methods. The electrochemical biosensor has growing interest in Salmonella detection mainly due to its excellent sensitivity, rapidity, and portability. The use of a highly specific bioreceptor, such as aptamers, and the application of nanomaterials are contributing factors to these excellent characteristics. Furthermore, insight on the types of biorecognition elements, the principles of electrochemical transduction elements, and the miniaturisation potential of electrochemical biosensors are discussed.
In this study, the combination of novel valinomycin doped chitosan-graphene oxide (C-GO-V) thin film and surface plasmon resonance (SPR) system for potassium ion (K+) detection has been developed. The novel C-GO-V thin film was deposited on the gold surface using spin coating technique. The system was used to monitor SPR signal for K+ in solution with and without C-GO-V thin film. The K+ can be detected by measuring the SPR signal when C-GO-V thin film is exposed to K+ in solution. The sensor produces a linear response for K+ ion up to 100ppm with sensitivity and detection limit of 0.00948°ppm-1 and 0.001ppm, respectively. These results indicate that the C-GO-V film is high potential as a sensor element for K+ that has been proved by the SPR measurement.